Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 276-280, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225991

RESUMO

Photoinjection of charge carriers profoundly changes the properties of a solid. This manipulation enables ultrafast measurements, such as electric-field sampling1,2, advanced recently to petahertz frequencies3-7, and the real-time study of many-body physics8-13. Nonlinear photoexcitation by a few-cycle laser pulse can be confined to its strongest half-cycle14-16. Describing the associated subcycle optical response, vital for attosecond-scale optoelectronics, is elusive when studied with traditional pump-probe metrology as the dynamics distort any probing field on the timescale of the carrier, rather than that of the envelope. Here we apply field-resolved optical metrology to these dynamics and report the direct observation of the evolving optical properties of silicon and silica during the first few femtoseconds following a near-1-fs carrier injection. We observe that the Drude-Lorentz response forms within several femtoseconds-a time interval much shorter than the inverse plasma frequency. This is in contrast to previous measurements in the terahertz domain8,9 and central to the quest to speed up electron-based signal processing.

2.
Phys Rev Lett ; 127(8): 087401, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477433

RESUMO

Multiphoton excitation of a solid by a few-cycle, intense laser pulse forms a very nonequilibrium distribution of charge carriers, where occupation probabilities do not necessarily decrease with energy. Within a fraction of the pulse, significant population inversion can emerge between pairs of valence-band states with a dipole-allowed transition between them. This population inversion leads to stimulated emission in a laser-excited solid at frequencies where the unperturbed solid is transparent. We establish the optimal conditions for observing this kind of strong-field-induced optical gain.

3.
Nature ; 493(7430): 75-8, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23222519

RESUMO

The control of the electric and optical properties of semiconductors with microwave fields forms the basis of modern electronics, information processing and optical communications. The extension of such control to optical frequencies calls for wideband materials such as dielectrics, which require strong electric fields to alter their physical properties. Few-cycle laser pulses permit damage-free exposure of dielectrics to electric fields of several volts per ångström and significant modifications in their electronic system. Fields of such strength and temporal confinement can turn a dielectric from an insulating state to a conducting state within the optical period. However, to extend electric signal control and processing to light frequencies depends on the feasibility of reversing these effects approximately as fast as they can be induced. Here we study the underlying electron processes with sub-femtosecond solid-state spectroscopy, which reveals the feasibility of manipulating the electronic structure and electric polarizability of a dielectric reversibly with the electric field of light. We irradiate a dielectric (fused silica) with a waveform-controlled near-infrared few-cycle light field of several volts per angström and probe changes in extreme-ultraviolet absorptivity and near-infrared reflectivity on a timescale of approximately a hundred attoseconds to a few femtoseconds. The field-induced changes follow, in a highly nonlinear fashion, the turn-on and turn-off behaviour of the driving field, in agreement with the predictions of a quantum mechanical model. The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.

4.
Nature ; 493(7430): 70-4, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23222521

RESUMO

The time it takes to switch on and off electric current determines the rate at which signals can be processed and sampled in modern information technology. Field-effect transistors are able to control currents at frequencies of the order of or higher than 100 gigahertz, but electric interconnects may hamper progress towards reaching the terahertz (10(12) hertz) range. All-optical injection of currents through interfering photoexcitation pathways or photoconductive switching of terahertz transients has made it possible to control electric current on a subpicosecond timescale in semiconductors. Insulators have been deemed unsuitable for both methods, because of the need for either ultraviolet light or strong fields, which induce slow damage or ultrafast breakdown, respectively. Here we report the feasibility of electric signal manipulation in a dielectric. A few-cycle optical waveform reversibly increases--free from breakdown--the a.c. conductivity of amorphous silicon dioxide (fused silica) by more than 18 orders of magnitude within 1 femtosecond, allowing electric currents to be driven, directed and switched by the instantaneous light field. Our work opens the way to extending electronic signal processing and high-speed metrology into the petahertz (10(15) hertz) domain.

5.
Phys Rev Lett ; 116(19): 197401, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232043

RESUMO

We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse. The predicted effects are experimentally observable using photoemission and terahertz spectroscopies.

6.
Nature ; 466(7307): 739-43, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686571

RESUMO

The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

8.
Turk Patoloji Derg ; 39(2): 109-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35876684

RESUMO

OBJECTIVE: Immunohistochemical investigation of archival histological material is a serious problem, since long-term storage of biological tissues, most often in formalin, leads to a loss of antigenic properties. However, the biological material can also be stored in the clearing agent methyl salicylate. The aim of this study was to assess the antigenicity of the human choroid plexus after extra long-term storage in methyl salicylate. MATERIAL AND METHOD: The study was performed on samples of fixed human choroid plexus (occasionally with attached neighboring pineal gland) stored in either methyl salicylate or paraffin blocks for 25 years. Chromogenic and fluorescence immunohistochemistry of vimentin, GFAP, type IV collagen, ß-catenin, α-smooth muscle actin, von Willebrand factor, CD68, mast cell tryptase, TMEM119, and synaptophysin was carried out. RESULTS: The storage of human choroid plexus in methyl salicylate for 25 years does not impair its histomorphology and preserves the properties of all the antigens assessed, which makes their immunohistochemical visualization possible using both light and fluorescence microscopy. Additionally, we found that long-term storage of human choroid plexus in methyl salicylate does not cause an increase in autofluorescence. CONCLUSION: Methyl salicylate can be recommended as a medium for long-term storage of biological tissue, as it provides excellent brain tissue preservation and retains its antigenic properties for up to 25 years.


Assuntos
Plexo Corióideo , Salicilatos , Humanos , Plexo Corióideo/química , Plexo Corióideo/patologia , Salicilatos/análise , Imuno-Histoquímica , Formaldeído/análise
9.
Sci Adv ; 8(51): eade1029, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542717

RESUMO

Optical-field sampling techniques provide direct access to the electric field of visible and near-infrared light. The existing methods achieve the necessary bandwidth using highly nonlinear light-matter interaction that involves ionization of atoms or generation of charge carriers in solids. We demonstrate an alternative, all-optical approach for measuring electric fields of broadband laser pulses, which offers an advantage in terms of sensitivity and signal-to-noise ratio and extends the detection bandwidth of optical methods to the petahertzdomain.

10.
Nat Commun ; 13(1): 962, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181662

RESUMO

Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents. Here, we present systematic experimental studies on the signal formation in gas-phase photoconductive sampling. Our theoretical model, based on the Ramo-Shockley-theorem, overcomes the previously introduced artificial separation into dipole and current contributions. Extensive numerical particle-in-cell-type simulations permit a quantitative comparison with experimental results and help to identify the roles of electron-neutral scattering and mean-field charge interactions. The results show that the heuristic models utilized so far are valid only in a limited range and are affected by macroscopic effects. Our approach can aid in the design of more sensitive and more efficient photoconductive devices.

11.
Opt Express ; 19(3): 1767-76, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21368991

RESUMO

We report the first experimental demonstration of a-periodic multilayer mirrors controlling the frequency sweep (chirp) of isolated attosecond XUV pulses. The concept was proven with about 200-attosecond pulses in the photon energy range of 100-130 eV measured via photoelectron streaking in neon. The demonstrated attosecond dispersion control is engineerable in a wide range of XUV photon energies and bandwidths. The resultant tailor-made attosecond pulses with highly enhanced photon flux are expected to significantly advance attosecond metrology and spectroscopy and broaden their range of applications.


Assuntos
Lentes , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta
12.
Nat Commun ; 11(1): 430, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969568

RESUMO

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure.

13.
Opt Express ; 17(20): 17678-93, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907553

RESUMO

We investigate attosecond streaking measurements, where a spectrogram is described by an ensemble of electron wave packets. Such a description may be required for processes more complex than direct photoemission from an isolated atom; an ensemble of wave packets may also be needed to describe the role of shot-to-shot fluctuations or a non-uniform spatio-temporal profile of attosecond light pulses. Under these conditions, we examine the performance of conventional (FROG) analysis of attosecond streaking measurements.


Assuntos
Modelos Teóricos , Análise Espectral/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
14.
Opt Express ; 15(23): 15351-64, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19550821

RESUMO

Focus Serial: Frontiers of Nonlinear Optics

We theoretically investigate the generation of high harmonics and attosecond pulses by mid-infrared (IR) driving fields. Conditions for coherent build-up of high harmonics are revisited. We show that the coherence length dictated by ionization-induced dephasing does not constitute an ultimate limitation to the coherent growth of soft X-ray (> 100 eV) harmonics driven by few-cycle mid-IR driving pulses: perfect phase-matching, similar to non-adiabatic self-phase- matching, can be achieved even without non-linear deformation of the driving pulse. Our trajectory-based analysis of phase-matching reveals several important advantages of using longer laser wavelengths: conversion efficiency can be improved by orders of magnitude, phase-matched build-up of harmonics can be achieved in a jet with a high gas pressure, and isolated attosecond pulses can be extracted from plateau harmonics.

15.
ACS Appl Mater Interfaces ; 8(35): 23160-6, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27533107

RESUMO

Phase separations in ternary/multinary semiconductor alloys is a major challenge that limits optical and electronic internal device efficiency. We have found ubiquitous local phase separation in In1-xGaxN alloys that persists to nanoscale spatial extent by employing high-resolution nanoimaging technique. We lithographically patterned InN/sapphire substrates with nanolayers of In1-xGaxN down to few atomic layers thick that enabled us to calibrate the near-field infrared response of the semiconductor nanolayers as a function of composition and thickness. We also developed an advanced theoretical approach that considers the full geometry of the probe tip and all the sample and substrate layers. Combining experiment and theory, we identified and quantified phase separation in epitaxially grown individual nanoalloys. We found that the scale of the phase separation varies widely from particle to particle ranging from all Ga- to all In-rich regions and covering everything in between. We have found that between 20 and 25% of particles show some level of Ga-rich phase separation over the entire sample region, which is in qualitative agreement with the known phase diagram of In1-xGaxN system.

16.
Sci Rep ; 5: 14581, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412407

RESUMO

For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene.

17.
Science ; 357(6357): 1239-1240, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28935793
18.
Phys Rev Lett ; 94(21): 213001, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-16090316

RESUMO

We describe how correlations between electrons can be used to trace the dynamics of correlated two-electron ionization with attosecond precision, without using attosecond pulses. The approach is illustrated using the example of Auger or Coster-Kronig decay triggered by photoionization with an extreme ultraviolet pulse. It requires correlated measurements of angle-resolved energy spectra of both the photo- and Auger electrons in the presence of a laser pulse. To reconstruct the dynamics, we use not only classical time and energy correlation, but also entanglement between the two electrons.

19.
Opt Lett ; 30(3): 332-4, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15751902

RESUMO

A new scheme for stabilizing the carrier-envelope (CE) phase of a few-cycle laser pulse train is demonstrated. Self-phase modulation and difference-frequency generation in a single periodically poled lithium niobate crystal that transmits the main laser beam allows CE phase locking directly in the usable output. The monolithic scheme obviates the need for splitting off a fraction of the laser output for CE phase control, coupling into microstructured fiber, and separation and recombination of spectral components. As a consequence, the output yields 6-fs, 800-nm pulses with an unprecedented degree of short- and long-term reproducibility of the electric field waveform.

20.
Phys Rev Lett ; 91(15): 153901, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-14611466

RESUMO

We show that the strength of the central electric field peaks in a few-cycle laser pulse can be recovered from a frequency-time image of the high harmonic spectrum generated in a gas volume. Pulse intensity, duration, and also the carrier-envelope phase phi(CE) can be determined. A simple and robust observable is defined that provides a gauge of phi(CE) for pulse durations up to three optical cycles, corresponding to 7.8 fs FWHM at the Ti:sapphire wavelength of 800 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA