RESUMO
BACKGROUND: Legionnaires' disease (LD) is associated with high mortality rates and poses a diagnostic and therapeutic challenge. Use of the rapid urinary antigen test (UAT) has been linked to improved outcome. We examined the association between the method of diagnosis (UAT or culture) and various clinical and microbiological characteristics and outcome of LD. METHODS: Consecutive patients with pneumonia and confirmation of Legionella infection by a positive UAT and/or a positive culture admitted between the years 2006-2012 to a university hospital were retrospectively studied. Isolated L. pneumophila strains were subject to serogrouping, immunological subtyping and sequence-based typing. Variables associated with 30-day all-cause mortality were analyzed using logistic regression as well as cox regression. RESULTS: Seventy-two patients were eligible for mortality analyses (LD study group), of whom 15.5 % have died. Diagnosis based on positive L. pneumophila UAT as compared to positive culture (OR = 0.18, 95 % CI 0.03-0.98, p = 0.05) and administration of appropriate antibiotic therapy within 2 hospitalization days as compared to delayed therapy (OR = 0.16, 95 % CI 0.03-0.90, p = 0.04) were independently associated with reduced mortality. When controlling for intensive care unit (ICU) admissions, the method of diagnosis became non-significant. Survival analyses showed a significantly increased death risk for patients admitted to ICU compared to others (HR 12.90, 95 % CI 2.78-59.86, p = 0.001) and reduced risk for patients receiving appropriate antibiotic therapy within the first two admissions days compared to delayed therapy (HR 0.13, 95 % CI 0.04-0.05, p = 0.001). Legionella cultures were positive in 35 patients (including 29 patients from the LD study group), of whom 65.7 % were intubated and 37.1 % have died. Sequence type (ST) ST1 accounted for 50.0 % of the typed cases and ST1, OLDA/Oxford was the leading phenon (53.8 %). Mortality rate among patients in the LD study group infected with ST1 was 18.2 % compared to 42.9 % for non-ST1 genotypes (OR = 0.30, 95 % CI 0.05-1.91, p = 0.23). CONCLUSIONS: The study confirms the importance of early administration of appropriate antibiotic therapy and at the same time highlights the complex associations of different diagnostic approaches with LD outcome. Infection with ST1 was not associated with increased mortality. Genotype effects on outcome mandate examination in larger cohorts.
Assuntos
Doença dos Legionários/microbiologia , Idoso , Antibacterianos/uso terapêutico , Antígenos de Bactérias/análise , Estudos de Coortes , Feminino , Genótipo , Hospitalização , Humanos , Unidades de Terapia Intensiva , Legionella pneumophila , Doença dos Legionários/complicações , Doença dos Legionários/fisiopatologia , Masculino , Estudos Retrospectivos , Sorogrupo , Resultado do TratamentoRESUMO
Non-typhoidal salmonellosis (NTS) is one of the most common foodborne diseases worldwide. In this study, we aimed to analyze trends in the epidemiology of NTS in the last decade in Israel. Laboratory-confirmed cases of NTS at eight sentinel laboratories were reported to the Israel Sentinel Laboratory-Based Surveillance Network, integrated with the serotype identification performed at the Salmonella National Reference Laboratory of the Ministry of Health. The decrease in NTS incidence since 1999 continued between 2010 and 2014 (16.1 per 100,000 in 2014) and was interrupted by a rise between 2015 and 2017 (39.1 per 100,000 in 2017) associated with outbreaks of Salmonella Enteritidis. The incidence of NTS dropped again thereafter (21.4 per 100,000 in 2021). The 0-4 age group was the most affected by NTS (55.5% of the cases) throughout the surveillance period. The age-adjusted incidence rates were consistently high in the summer months (June-September) and low in the winter months (December-February). The overall decrease in the incidence of NTS in Israel since 1999 was temporarily interrupted in the last decade by country-wide outbreaks involving emerging or re-emerging Salmonella serotypes. Control measures should be enhanced for all risk points of food chain transmission of Salmonella spp. to further reduce the NTS morbidity in Israel.
Assuntos
Infecções por Salmonella , Humanos , Israel/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella , Sorogrupo , Surtos de DoençasRESUMO
Non-typhoidal Salmonella (NTS) poses a global threat to public health. Poultry, one of the main reservoirs of NTS, is usually not clinically affected by most NTS, yet the economic losses to the poultry industry due to control and mitigation efforts, and due to negative publicity can be tremendous. NTS strains are routinely characterized into serotypes in a time-consuming, labor-intensive multistep process that requires skilled personnel. Moreover, the discriminatory power of serotyping is limited compared to other subtyping methods. Whole-genome sequence data enable the identification of genetic variation within serotypes. However, sequencing is often limited by available resources, and analyzing and interpreting the genetic data may be time-consuming. Source tracing during epidemiological outbreak investigations requires rapid and efficient characterization of strains to control pathogen spread. Here we designed a multiplex polymerase chain reaction (PCR) assay for the detection of genetic variants of Salmonella Muenchen, a serotype that has emerged in Israel in the last 3 yr in both clinical human cases and different hosts. Test sensitivity of 99.21% and specificity of 94 to 100% were determined using in-silico PCR with a dataset of 18,282 NTS assemblies from 37 NTS serotypes. Similarly, test sensitivity of 100% and specificity of 96.2 to 100% were determined in-vitro with 120 NTS isolates of 52 serotypes. Moreover, the test enabled differentiation between the common sequence types of serotype Muenchen using both approaches. As opposed to traditional serotyping and other subtyping methods, the designed test allows for rapid and cost-efficient detection of the emerging S. Muenchen serotype and its variants in a single step. Future development of similar assays for other dominant serotypes may help reduce the time and cost required for detection and initial characterization of dominant NTS strains. Overall, these tests will be beneficial to both public health and for reducing of the economic losses to the poultry industry due to NTS infections.
Assuntos
Salmonella enterica , Humanos , Animais , Sorogrupo , Marcadores Genéticos , Galinhas , Salmonella , Sorotipagem/veterinária , Aves DomésticasRESUMO
Alpha-synuclein (alphaS) is a protein involved in the cytopathology and genetics of Parkinson disease and is thought to affect mitochondrial complex I activity. Previous studies have shown that mitochondrial toxins and specifically inhibitors of complex I activity enhance alphaS pathogenesis. Here we show that alphaS overexpression specifically inhibits complex I activity in dopaminergic cells and in A53T alphaS transgenic mouse brains. Importantly, our results indicate that the inhibitory effect on complex I activity is not associated with alphaS-related pathology. Specifically, complex I activity measured in purified mitochondria from A53T alphaS transgenic mouse brains was not affected by mouse age; Parkinson disease-like symptoms; levels of alphaS soluble oligomers; levels of insoluble, lipid-associated alphaS; or alphaS intraneuronal depositions in vivo. Likewise, no correlation was found between complex I activity and polyunsaturated fatty acid-induced alphaS depositions in Lewy body-like inclusions in cultured dopaminergic cells. We further show that the effect of alphaS on complex I activity is not due to altered mitochondrial protein levels or affected complex I assembly. Based on the results herein, we suggest that alphaS expression negatively regulates complex I activity as part of its normal, physiological role.
Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Transgenes , alfa-Sinucleína/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Dopamina/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , alfa-Sinucleína/genéticaRESUMO
alpha-Synuclein (alphaS) is a presynaptic protein implicated in Parkinson's disease (PD). Growing evidence implicates mitochondrial dysfunction, oxidative stress, and alphaS-lipid interactions in the gradual accumulation of alphaS in pathogenic forms and its deposition in Lewy bodies, the pathological hallmark of PD and related synucleinopathies. The peroxisomal biogenesis disorders (PBD), with Zellweger syndrome serving as the prototype of this group, are characterized by malformed and functionally impaired peroxisomes. Here we utilized the PBD mouse models Pex2-/-, Pex5-/-, and Pex13-/- to study the potential effects of peroxisomal dysfunction on alphaS-related pathogenesis. We found increased alphaS oligomerization and phosphorylation and its increased deposition in cytoplasmic inclusions in these PBD mouse models. Furthermore, we show that alphaS abnormalities correlate with the altered lipid metabolism and, specifically, with accumulation of long chain, n-6 polyunsaturated fatty acids that occurs in the PBD models.
Assuntos
Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , alfa-Sinucleína/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/genética , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Biogênese de Organelas , Estresse Oxidativo/fisiologia , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/patologia , FosforilaçãoRESUMO
Exposure to Legionella spp. contaminated aerosols in hotel settings confers risk for travel-associated Legionnaire's disease (TALD). In this study, we investigated the prevalence of Legionella contamination and its molecular diversity in hotels and resorts across Israel. The study was comprised of a convenience sample of water systems from 168 hotels and resorts countrywide, routinely inspected between March 2015 and February 2017. Isolation and quantitation of Legionella were performed in a water laboratory using the ISO 11731 method. The distribution of Legionella isolates was analyzed according to geography and source. The genetic diversity of a subset of isolates was analyzed by sequence-based typing (SBT) at the National Reference Laboratory for Legionella and compared to the national database. Out of 2830 samples tested, 470 (17%) obtained from 102 different premises (60% of hotels) were positive for Legionella spp. In 230 samples (49% of all positive, 8% of total samples), accounting for 37% of hotels, Legionella spp. counts exceeded the regulatory threshold of 1000 CFU/L. The most frequently contaminated water sources were cooling towers (38%), followed by faucets, hot tubs, water lines, and storage tanks (14%-17% each). Furthermore, 32% and 17% of samples obtained from cooling towers and hot tubs, respectively, exceeded the regulatory thresholds. SBT was performed on 78 strains and revealed 27 different sequence types (STs), including two novel STs. The most prevalent STs found were ST1 (26%), ST87 (10%), ST93 (6%), and ST461 and ST1516 (5% each). Several L. pneumophila STs were found to be limited to certain geographical regions. This is the first study to investigate the prevalence and diversity of Legionella in hotels and resorts in Israel during non-outbreak environmental inspections. These findings will inform risk assessment, surveillance, and control measures of TALD.
RESUMO
OBJECTIVE: While evidence for oxidative injury is frequently detected in brains of humans affected by Parkinson's disease (PD) and in relevant animal models, there is uncertainty regarding its cause. We tested the potential role of catalase in the oxidative injury that characterizes PD. METHODS: Utilizing brains of A53T α-Syn and ntg mice, and cultured cells, we analyzed catalase activity and expression, and performed biochemical analyses of peroxisomal metabolites. RESULTS: Lower catalase expression and lower activity levels were detected in A53T α-Syn brains and α-Syn-expressing cells. The effect on catalase activity was independent of disease progression, represented by mouse age and α-Syn mutation, suggesting a potential physiological function for α-Syn. Notably, catalase activity and expression were unaffected in brains of mice modeling Alzheimer's disease. Moreover, we found that α-Syn expression downregulate the peroxisome proliferator-activated receptor (PPAR)γ, which controls catalase transcription. Importantly, activation of either PPARγ2, PPARα or retinoic X receptor eliminated the inhibiting effect of α-Syn on catalase activity. In addition, activation of these nuclear receptors enhanced the accumulation of soluble α-Syn oligomers, resulting in a positive association between the degree of soluble α-Syn oligomers and catalase activity. Of note, a comprehensive biochemical analysis of specific peroxisomal metabolites indicated no signs of dysfunction in specific peroxisomal activities in brains of A53T α-Syn mice. INTERPRETATION: Our results suggest that α-Syn expression may interfere with the complex and overlapping network of nuclear receptors transcription activation. In result, catalase activity is affected through mechanisms involved in the regulation of soluble α-Syn oligomers.
RESUMO
α-Synuclein (α-Syn) is a neuronal protein that accumulates progressively in Parkinson's disease (PD) and related synucleinopathies. Attempting to identify cellular factors that affect α-Syn neuropathology, we previously reported that polyunsaturated fatty acids (PUFAs) promote α-Syn oligomerization and aggregation in cultured cells. We now report that docosahexaenoic acid (DHA), a 22:6 PUFA, affects α-Syn oligomerization by activating retinoic X receptor (RXR) and peroxisome proliferator-activated receptor γ2 (PPARγ2). In addition, we show that dietary changes in brain DHA levels affect α-Syn cytopathology in mice transgenic for the PD-causing A53T mutation in human α-Syn. A diet enriched in DHA, an activating ligand of RXR, increased the accumulation of soluble and insoluble neuronal α-Syn, neuritic injury and astrocytosis. Conversely, abnormal accumulations of α-Syn and its deleterious effects were significantly attenuated by low dietary DHA levels. Our results suggest a role for activated RXR/PPARγ 2, obtained by elevated brain PUFA levels, in α-Syn neuropathology.
Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Doença de Parkinson/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Receptores Citoplasmáticos e Nucleares/genética , alfa-Sinucleína/genéticaRESUMO
Alpha Synuclein (α-Syn) is a protein implicated in mechanisms of neuronal degeneration in Parkinson's disease (PD). α-Syn is primarily a neuronal protein, however, its expression is found in various tumors including ovarian, colorectal and melanoma tumors. It has been hypothesized that neurodegeneration may share common mechanisms with oncogenesis. We tested whether α-Syn expression affects tumorigenesis of three types of tumors. Specifically, B16 melanoma, E0771 mammary gland adenocarcinoma and D122 Lewis lung carcinoma. For this aim, we utilized transgenic mice expression the human A53T α-Syn form. We found that the in vivo growth of B16 and E0771 but not D122 was enhanced in the A53T α-Syn mice. The effect on tumorigenesis was not detected in age-matched APP/PS1 mice, modeling Alzheimer's disease (AD), suggesting a specific effect for α-Syn-dependent neurodegeneration. Importantly, transgenic α-Syn expression was detected within the three tumor types. We further show uptake of exogenously added, purified α-Syn, by the cultured tumor cells. In accord, with the affected tumorigenesis in the young A53T α-Syn mice, over-expression of α-Syn in cultured B16 and E0771 cells enhanced proliferation, however, had no effect on the proliferation of D122 cells. Based on these results, we suggest that certain forms of α-Syn may selectively accelerate cellular mechanisms leading to cancer.