Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 369: 231-250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479444

RESUMO

Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 µm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 µm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.


Assuntos
Antituberculosos , Clofazimina , Portadores de Fármacos , Pulmão , Nanopartículas , Administração por Inalação , Porosidade , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/administração & dosagem , Humanos , Pulmão/metabolismo , Clofazimina/administração & dosagem , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Dióxido de Silício/química , Dióxido de Silício/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Liberação Controlada de Fármacos , Tamanho da Partícula , Tuberculose/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA