Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Musculoskelet Disord ; 23(1): 16, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980094

RESUMO

BACKGROUND: Teriparatide (TPTD) is a drug for osteoporosis that promotes bone formation and improves bone quality. However, the effects of TPTD on cortical bone are not well understood. Sweep imaging with Fourier transform (SWIFT) has been reported as a useful tool for evaluating bound water of cortical bone, but it has yet to be used to investigate the effects of TPTD on cortical bone. This study aimed to evaluate the consequences of the effect of TPTD on cortical bone formation using SWIFT. METHODS: Twelve-week-old female Sprague-Dawley rats (n = 36) were reared after ovariectomy to create a postmenopausal osteoporosis model. They were divided into two groups: the TPTD and non-TPTD groups. Rats were euthanized at 4, 12, and 24 weeks after initiating TPTD treatment. Tibial bones were evaluated using magnetic resonance imaging (MRI) and bone histomorphometry. In MRI, proton density-weighted imaging (PDWI) and SWIFT imaging were performed. The signal-to-noise ratio (SNR) was calculated for each method. The same area evaluated by MRI was then used to calculate the bone formation rate by bone histomorphometry. Measurements were compared using the Mann-Whitney U-test, and a P-value of < 0.05 was considered significant. RESULTS: PDWI-SNR was not significantly different between the two groups at any time point (P = 0.589, 0.394, and 0.394 at 4, 12, and 24 weeks, respectively). Contrarily, SWIFT-SNR was significantly higher in the TPTD group than in the non-TPTD group at 4 weeks after initiating treatment, but it was not significantly different at 12 and 24 weeks (P = 0.009, 0.937, and 0.818 at 4, 12, and 24 weeks, respectively). The bone formation rate assessed by histomorphometry was significantly higher in the TPTD group than in the non-TPTD group at all timepoints (P < 0.05, all weeks). In particular, at 4 weeks, the bone formation rate was markedly higher in the TPTD group than in the non-TPTD group (P = 0.028, 1.98 ± 0.33 vs. 0.09 ± 0.05 µm3/µm2/day). CONCLUSIONS: SWIFT could detect increased signals of bound water, reflecting the effect of TPTD on the cortical bone. The signal detected by SWIFT reflects a marked increase in the cortical bone formation rate.


Assuntos
Conservadores da Densidade Óssea , Teriparatida , Animais , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Osso Cortical/diagnóstico por imagem , Feminino , Análise de Fourier , Humanos , Imageamento por Ressonância Magnética , Osteogênese , Ratos , Ratos Sprague-Dawley , Teriparatida/farmacologia , Teriparatida/uso terapêutico
2.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298907

RESUMO

Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.


Assuntos
Neuropeptídeo Y/metabolismo , Núcleo Accumbens/metabolismo , Animais , Sistema Nervoso Autônomo/metabolismo , Humanos , Neurônios/metabolismo , Receptores de Neuropeptídeo Y/metabolismo
3.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499371

RESUMO

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides information on native structures and the dynamics for predicting and designing the physical properties of multi-component solid materials. However, such an analysis is difficult because of the broad and overlapping spectra of these materials. Therefore, signal deconvolution and prediction are great challenges for their ssNMR analysis. We examined signal deconvolution methods using a short-time Fourier transform (STFT) and a non-negative tensor/matrix factorization (NTF, NMF), and methods for predicting NMR signals and physical properties using generative topographic mapping regression (GTMR). We demonstrated the applications for macromolecular samples involved in cellulose degradation, plastics, and microalgae such as Euglena gracilis. During cellulose degradation, 13C cross-polarization (CP)-magic angle spinning spectra were separated into signals of cellulose, proteins, and lipids by STFT and NTF. GTMR accurately predicted cellulose degradation for catabolic products such as acetate and CO2. Using these methods, the 1H anisotropic spectrum of poly-ε-caprolactone was separated into the signals of crystalline and amorphous solids. Forward prediction and inverse prediction of GTMR were used to compute STFT-processed NMR signals from the physical properties of polylactic acid. These signal deconvolution and prediction methods for ssNMR spectra of macromolecules can resolve the problem of overlapping spectra and support macromolecular characterization and material design.


Assuntos
Celulose/química , Euglena gracilis/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Acetatos/química , Algoritmos , Anisotropia , Dióxido de Carbono/química , Análise de Fourier , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Plásticos , Poliésteres/química , Análise de Regressão , Termogravimetria
4.
J Magn Reson Imaging ; 51(1): 133-143, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044458

RESUMO

BACKGROUND: Growth plate injuries and disorders cause premature closure, resulting in shortened or deformed limbs. Quantitative assessment by MRI might monitor the status of the growth plate and may assist in the prediction of these deformations. PURPOSE: To investigate whether the status of the growth plate can be monitored by quantitative evaluation using MRI of the noninjured region of the growth plate in a physeal injury model. STUDY TYPE: Prospective, longitudinal. ANIMAL MODEL: A 3.0-mm drill was used to create an injury to the central region of the right proximal tibial growth plate in 5-week-old male Japanese white rabbits (N = 18). The left tibia served as the control. FIELD STRENGTH/SEQUENCE: 7.04T, T2 -weighted imaging, diffusion-weighted imaging. ASSESSMENT: Eight of 18 rabbits underwent MRI, proton density-weighted imaging, and T2 -weighted and diffusion-weighted imaging. T2 and apparent diffusion coefficient (ADC) maps were generated for each image. The growth plate height and the T2 and ADC values of the noninjured region were measured. Two rabbits were sacrificed at 2, 4, 6, 8, and 10 weeks postinjury. Proximal tibial bones were evaluated using microcomputed tomography, histological, and immunohistological methods. STATISTICAL TESTS: Data were compared using repeated-measures analysis of variance followed by Tukey post-hoc multiple comparison. RESULTS: Growth plate height decreased at 10 weeks postinjury (P = 0.018) on the injured side. T2 values were greater at 2 weeks postinjury (P = 0.0478) and decreased at 8 and 10 weeks (P = 0.0226, P = 0.0470, respectively) on the injured side. ADC values increased at 6 weeks on the lateral side (P = 0.0304) and decreased at 8 weeks and 10 weeks postinjury (P < 0.01) on the medial and injured sides, respectively. DATA CONCLUSION: Quantitative MRI can help monitor the status of the growth plate and capture its changes early. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:133-143.


Assuntos
Imageamento por Ressonância Magnética/métodos , Fraturas Salter-Harris/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Lâmina de Crescimento/diagnóstico por imagem , Estudos Longitudinais , Masculino , Estudos Prospectivos , Coelhos
5.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340198

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is commonly used to characterize molecular complexity because it produces informative atomic-resolution data on the chemical structure and molecular mobility of samples non-invasively by means of various acquisition parameters and pulse programs. However, analyzing the accumulated NMR data of mixtures is challenging due to noise and signal overlap. Therefore, data-cleansing steps, such as quality checking, noise reduction, and signal deconvolution, are important processes before spectrum analysis. Here, we have developed an NMR measurement informatics tool for data cleansing that combines short-time Fourier transform (STFT; a time-frequency analytical method) and probabilistic sparse matrix factorization (PSMF) for signal deconvolution and noise factor analysis. Our tool can be applied to the original free induction decay (FID) signals of a one-dimensional NMR spectrum. We show that the signal deconvolution method reduces the noise of FID signals, increasing the signal-to-noise ratio (SNR) about tenfold, and its application to diffusion-edited spectra allows signals of macromolecules and unsuppressed small molecules to be separated by the length of the T2* relaxation time. Noise factor analysis of NMR datasets identified correlations between SNR and acquisition parameters, identifying major experimental factors that can lower SNR.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Algoritmos , Análise Fatorial , Modelos Teóricos , Razão Sinal-Ruído
6.
Anesthesiology ; 128(4): 796-809, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29356757

RESUMO

BACKGROUND: In naive rats, corticosteroids activate neuronal membrane-bound glucocorticoid and mineralocorticoid receptors in spinal cord and periphery to modulate nociceptive behavior by nongenomic mechanisms. Here we investigated inflammation-induced changes in neuronal versus glial glucocorticoid and mineralocorticoid receptors and their ligand-mediated nongenomic impact on mechanical nociception in rats. METHODS: In Wistar rats (n = 5 to 7/group) with Freund's complete adjuvant hind paw inflammation, we examined glucocorticoid and mineralocorticoid receptor expression in spinal cord and peripheral sensory neurons versus glial using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, immunohistochemistry, and radioligand binding. Moreover, we explored the expression of mineralocorticoid receptors protecting enzyme 11-betahydroxysteroid dehydrogenase type 2 as well as the nociceptive behavioral changes after glucocorticoid and mineralocorticoid receptors agonist or antagonist application. RESULTS: Hind paw inflammation resulted in significant upregulation of glucocorticoid receptors in nociceptive neurons of spinal cord (60%) and dorsal root ganglia (15%) as well as mineralocorticoid receptors, while corticosteroid plasma concentrations remained unchanged. Mineralocorticoid (83 ± 16 fmol/mg) but not glucocorticoid (104 ± 20 fmol/mg) membrane binding sites increased twofold in dorsal root ganglia concomitant with upregulated 11-betahydroxysteroid dehydrogenase type 2 (43%). Glucocorticoid and mineralocorticoid receptor expression in spinal microglia and astrocytes was small. Importantly, glucocorticoid receptor agonist dexamethasone or mineralocorticoid receptor antagonist canrenoate-K rapidly and dose-dependently attenuated nociceptive behavior. Isobolographic analysis of the combination of both drugs showed subadditive but not synergistic or additive effects. CONCLUSIONS: The enhanced mechanical sensitivity of inflamed hind paws accompanied with corticosteroid receptor upregulation in spinal and peripheral sensory neurons was attenuated immediately after glucocorticoid receptor agonist and mineralocorticoid receptor antagonist administration, suggesting acute nongenomic effects consistent with detected membrane-bound corticosteroid receptors.


Assuntos
Glucocorticoides/farmacologia , Nociceptores/metabolismo , Medição da Dor/métodos , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Analgésicos/farmacologia , Animais , Adjuvante de Freund/toxicidade , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Nociceptores/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Mineralocorticoides/agonistas
7.
Analyst ; 142(22): 4161-4172, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29063093

RESUMO

NMR offers tremendous advantages in the analyses of molecular complexity, such as crude bio-fluids, bio-extracts, and intact cells and tissues. Here we introduce recent applications of NMR approaches, as well as next generation sequencing (NGS), for the evaluation of human and environmental health (i.e., maintenance of a homeostatic state) based on metabolic and microbial profiling and data science. We describe useful databases and web tools that are used to support these studies by facilitating the characterization of metabolites from complex NMR spectra. Because the NMR spectra of metabolic mixtures can produce numerical matrix data (e.g., chemical shift versus intensity) with high reproducibility and inter-institution convertibility, advanced data science approaches, such as multivariate analysis and machine learning, are desirable; therefore, we also introduce informatics techniques derived from heterogeneously measured data, such as environmental microbiota, for the extraction of submerged information using data science approaches. We summarize recent studies of microbiomes that are based on these techniques and show that, particularly in human studies, NMR-based metabolic characterization of non-invasive samples, such as feces, can provide a large quantity of beneficial information regarding human health and disease.


Assuntos
Homeostase , Espectroscopia de Ressonância Magnética , Microbiota , Humanos , Metabolômica , Reprodutibilidade dos Testes
8.
J Biol Chem ; 290(19): 12332-45, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25805499

RESUMO

Estrogen-related receptor (ERR) is a member of the nuclear receptor superfamily that has strong homology with estrogen receptor (ER) α. ERR has three subtypes (α, ß, and γ) expressed in estrogen-sensitive organs, including ovary, breast, and brain. No endogenous ligands of ERRs have been identified, but these receptors share a common DNA element with ERα and control estrogen-mediated gene transcription. Recent evidence suggests a role of ERRs in estrogen-related pathophysiology, but the detailed mechanisms of ERR functions in estrogen-related tissues are unclear. Using live-cell imaging with fluorescent protein labeling, we found that only ERRß among the ERRs exhibits a punctate intranuclear pattern overlapping with ERα following 17ß-estradiol (E2)-stimulation. Fluorescence recovery after photobleaching showed significant reduction of the mobility of ligand-activated ERα with co-expression of ERRß. Fluorescence resonance energy transfer revealed that ERRß directly interacts with ERα. The N-terminal domain of ERRß was identified as the region that interacts with ERα. We also found a correlation between punctate cluster formation of ERα and interaction between the receptors. Expression of ERRß significantly repressed ERα-mediated transactivity, whereas that of other ERR subtypes had no effect on the transactivity of ERα. Consistent with this finding, E2-stimulated proliferation of MCF-7 breast carcinoma cells and bcl-2 expression was significantly inhibited by expression of ERRß. These results provide strong evidence for a suppressive effect of ERRß on estrogen signaling through reduction of the intranuclear mobility of ERα. The findings further suggest a unique inhibitory role for ERRß in estrogen-dependent cellular function such as cancer cell proliferation.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Processamento Alternativo , Animais , Neoplasias da Mama/metabolismo , Células COS , Carcinoma/metabolismo , Proliferação de Células , Chlorocebus aethiops , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Transferência Ressonante de Energia de Fluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Células MCF-7 , Estrutura Terciária de Proteína , Análise de Sequência de DNA
10.
J Reprod Dev ; 61(4): 351-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26004302

RESUMO

The present study aimed to determine estrogen feedback action sites to mediate prepubertal restraint of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release in female rats. Wistar-Imamichi strain rats were ovariectomized (OVX) and received a local estradiol-17ß (estradiol) or cholesterol microimplant in several brain areas, such as the medial preoptic area (mPOA), paraventricular nucleus, ventromedial nucleus and arcuate nucleus (ARC), at 20 or 35 days of age. Six days after receiving the estradiol microimplant, animals were bled to detect LH pulses at 26 or 41 days of age, representing the pre- or postpubertal period, respectively. Estradiol microimplants in the mPOA or ARC, but not in other brain regions, suppressed LH pulses in prepubertal OVX rats. Apparent LH pulses were found in the postpubertal period in all animals bearing estradiol or cholesterol implants. It is unlikely that pubertal changes in responsiveness to estrogen are due to a change in estrogen receptor (ER) expression, because the number of ERα-immunoreactive cells and mRNA levels of Esr1, Esr2 and Gpr30 in the mPOA and ARC were comparable between the pre- and postpubertal periods. In addition, kisspeptin or GnRH injection overrode estradiol-dependent prepubertal LH suppression, suggesting that estrogen inhibits the kisspeptin-GnRH cascade during the prepubertal period. Thus, estrogen-responsive neurons located in the mPOA and ARC may play key roles in estrogen-dependent prepubertal restraint of GnRH/LH secretion in female rats.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Retroalimentação Fisiológica , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Implantes de Medicamento , Estradiol/administração & dosagem , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Terapia de Reposição de Estrogênios , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/sangue , Hormônio Liberador de Gonadotropina/metabolismo , Cinética , Hormônio Luteinizante/sangue , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Ovariectomia/efeitos adversos , Área Pré-Óptica/citologia , Área Pré-Óptica/efeitos dos fármacos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Maturidade Sexual
11.
Sci Rep ; 14(1): 3601, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351316

RESUMO

Major depressive disorder is a common psychiatric condition often resistant to medication. The Wistar-Kyoto (WKY) rat has been suggested as an animal model of depression; however, it is still challenging to translate results from animal models into humans. Solitary housing is a mild stress paradigm that can simulate the environment of depressive patients with limited social activity due to symptoms. We used voxel-based morphometry to associate the solitary-housed WKY (sWKY) rat model with data from previous human studies and validated our results with behavioural studies. As a result, atrophy in sWKY rats was detected in the ventral hippocampus, caudate putamen, lateral septum, cerebellar vermis, and cerebellar nuclei (p < 0.05, corrected for family-wise error rate). Locomotor behaviour was negatively correlated with habenula volume and positively correlated with atrophy of the cerebellar vermis. In addition, sWKY rats showed depletion of sucrose consumption not after reward habituation but without reward habituation. Although the application of sWKY rats in a study of anhedonia might be limited, we observed some similarities between the regions of brain atrophy in sWKY rats and humans with depression, supporting the translation of sWKY rat studies to humans.


Assuntos
Depressão , Transtorno Depressivo Maior , Ratos , Humanos , Animais , Ratos Endogâmicos WKY , Depressão/diagnóstico por imagem , Ratos Wistar , Transtorno Depressivo Maior/diagnóstico por imagem , Habitação , Modelos Animais de Doenças , Atrofia
12.
J Reprod Dev ; 59(3): 266-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23391862

RESUMO

Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin (KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative feedback on pulsatile GnRH/LH release. The effect of the injection of nor-binaltorphimine (nor-BNI), a kappa-opioid receptor (KOR) antagonist, into the third cerebroventricle (3V) on LH pulses was determined in ovariectomized (OVX) adult female rats with/without replacement of negative feedback levels of estradiol (low E2). The mean LH concentrations and baseline levels of LH secretion in nor-BNI-injected, low E2-treated rats were significantly higher compared with vehicle-treated controls. On the other hand, the nor-BNI treatment failed to affect any LH pulse parameters in OVX rats without low E2 treatment. These results suggest that Dyn is involved in the estrogen negative feedback regulation of pulsatile GnRH/LH release. The low E2 treatment had no significant effect on the numbers of ARC Pdyn (Dyn gene)-,Kiss1- and Tac2 (NKB gene)-expressing cells. The treatment also did not affect mRNA levels of Pdyn and Oprk1 (KOR gene) in the ARC-median eminence region, but significantly increased the ARC kisspeptin immunoreactivity. These findings suggest that the negative feedback level of estrogen suppresses kisspeptin release from the ARC KNDy neurons through an unknown mechanism without affecting the Dyn and KOR expressions in the ARC. Taken together, the present result suggests that Dyn-KOR signaling is a part of estrogen negative feedback action on GnRH/LH pulses by reducing the kisspeptin release in female rats.


Assuntos
Dinorfinas/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Ventrículos Cerebrais/metabolismo , Retroalimentação Fisiológica , Feminino , Hibridização In Situ , Neurocinina B/metabolismo , Neurônios/metabolismo , Ovariectomia , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Radioimunoensaio , Ratos , Ratos Wistar , Transdução de Sinais , Taquicininas/metabolismo
13.
Neurosci Lett ; 800: 137119, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36773927

RESUMO

Forkhead-box subclass P member 2 (FOXP2/FoxP2) protein, a transcription factor, regulates the development of certain brain functions, including human speech and animal vocalization. Although rapid progress has been made in demonstrating a relationship between FoxP2 expression in the brain and vocalization of the zebra finch, a typical vocal learner, the relationship in avian vocal non-learners, including chickens remains elusive. Because the midbrain plays a key role in innate vocalization development, we analyzed the FoxP2 protein in the midbrain of chicks, which do not cheep before hatching but cheep and call after hatching. Western blot analyses showed a significant reduction in FoxP2 protein in the chick midbrain after hatching compared with the findings before hatching. Quantitative immunohistochemistry revealed that FoxP2-immunoreactive (ir) cells significantly decreased at the stratum gris fibrosum (SGFS) of the optic tectum in the chick midbrain after hatching compared with the findings before hatching. These findings support the notion that FoxP2-ir cell numbers decrease at a specific region in the midbrain after hatching may be involved in innate vocalization of avian vocal non-learners.


Assuntos
Galinhas , Aves Canoras , Animais , Humanos , Galinhas/metabolismo , Encéfalo/metabolismo , Fatores de Transcrição/metabolismo , Mesencéfalo/metabolismo , Vocalização Animal/fisiologia , Fatores de Transcrição Forkhead/metabolismo
14.
J Magn Reson ; 351: 107438, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084520

RESUMO

As global environmental sustainability becomes increasingly emphasized, the development of eco-friendly materials, including solutions to the issue of marine plastics, is thriving. However, the material parameter space is vast, making efficient search a challenge. Time-domain nuclear magnetic resonance offers material property information through the complex T2 relaxation curves resulting from multiple mobilities. In this research, we used the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence to evaluate the binding state of water (water affinity) in polymers synthesized with various monomer compositions, which were immersed in seawater. We also assessed the T2 relaxation property of the polymers using the magic sandwich echo, double quantum filter, and magic-and-polarization echo filter techniques. We separated the T2 relaxation curves of CPMG into free and bound water for polymers by employing semisupervized nonnegative matrix factorization. By employing the features of separated bound water and polymer properties, a polymer composition optimization method offered crucial factors to monomers through random forests, predicted the components of the polymer using generative topography mapping regression, and determined expected values using Bayesian optimization for polymer composition candidates with the desired high water affinity and high rigidity.

15.
Sci Rep ; 12(1): 10558, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732681

RESUMO

In the development of polymer materials, it is an important issue to explore the complex relationships between domain structure and physical properties. In the domain structure analysis of polymer materials, 1H-static solid-state NMR (ssNMR) spectra can provide information on mobile, rigid, and intermediate domains. But estimation of domain structure from its analysis is difficult due to the wide overlap of spectra from multiple domains. Therefore, we have developed a materials informatics approach that combines the domain modeling ( http://dmar.riken.jp/matrigica/ ) and the integrated analysis of meta-information (the elements, functional groups, additives, and physical properties) in polymer materials. Firstly, the 1H-static ssNMR data of 120 polymer materials were subjected to a short-time Fourier transform to obtain frequency, intensity, and T2 relaxation time for domains with different mobility. The average T2 relaxation time of each domain is 0.96 ms for Mobile, 0.55 ms for Intermediate (Mobile), 0.32 ms for Intermediate (Rigid), and 0.11 ms for Rigid. Secondly, the estimated domain proportions were integrated with meta-information such as elements, functional group and thermophysical properties and was analyzed using a self-organization map and market basket analysis. This proposed method can contribute to explore structure-property relationships of polymer materials with multiple domains.


Assuntos
Imageamento por Ressonância Magnética , Polímeros , Informática , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química
16.
RSC Adv ; 11(48): 30426-30447, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480260

RESUMO

The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.

17.
Front Neuroanat ; 15: 741868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566585

RESUMO

Neuropeptide Y (NPY) is a neural peptide distributed widely in the brain and has various functions in each region. We previously reported that NPY neurons in the nucleus accumbens (NAc) are involved in the regulation of anxiety behavior. Anterograde and retrograde tracing studies suggest that neurons in the NAc project to several areas, such as the lateral hypothalamus (LH) and ventral pallidum (VP), and receive afferent projections from the cortex, thalamus, and amygdala. However, the neural connections between accumbal NPY neurons and other brain areas in mice remain unclear. In this study, we sought to clarify these anatomical connections of NPY neurons in the NAc by investigating their neural outputs and inputs. To selectively map NPY neuronal efferents from the NAc, we injected Cre-dependent adeno-associated viruses (AAVs) into the NAc of NPY-Cre mice. This revealed that NAc NPY neurons exclusively projected to the LH. We confirmed this by injecting cholera toxin b subunit (CTb), a retrograde tracer, into the LH and found that approximately 7-10% of NPY neurons in the NAc were double-labeled for mCherry and CTb. Moreover, retrograde tracing using recombinant rabies virus (rRABV) also identified NAc NPY projections to the LH. Finally, we investigated monosynaptic input to the NPY neurons in the NAc using rRABV. We found that NPY neurons in the NAc received direct synaptic connections from the midline thalamic nuclei and posterior basomedial amygdala. These findings provide new insight into the neural networks of accumbal NPY neurons and should assist in elucidating their functional roles.

18.
Exp Neurol ; 327: 113216, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014439

RESUMO

Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that is widely expressed in the central nervous system, including the cerebral cortex, nucleus accumbens (NAc) and hypothalamus. We previously analyzed the behavior of transgenic mice exclusively expressing an unedited RNA isoform of the 5-HT2C receptor. These mice showed decreased NPY gene expression in the NAc and exhibited behavioral despair, suggesting that NAc NPY neurons may be involved in mood disorder; however, their role in this behavior remained unknown. Therefore, in the present study, we investigated the functional role of NAc NPY neurons in anxiety-like behavior by examining the impact of specific ablation or activation of NAc NPY neurons using NPY-Cre mice and Cre-dependent adeno-associated virus. Diphtheria toxin-mediated ablation of NAc NPY neurons significantly increased anxiety-like behavior in the open field and elevated plus maze tests, compared with before toxin treatment. Moreover, chemogenetic activation of NAc NPY neurons reduced anxiety-like behavior in both behavioral tests compared with control mice. These results suggest that NPY neurons in the NAc are involved in the modulation of anxiety in mice.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Núcleo Accumbens/metabolismo , Animais , Ansiedade/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo
19.
Biol Reprod ; 81(6): 1216-25, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19684332

RESUMO

The brain mechanism regulating gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release is sexually differentiated in rodents. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been suggested to be sexually dimorphic and involved in the GnRH/LH surge generation. The present study aimed to determine the significance of neonatal testicular androgen to defeminize AVPV kisspeptin expression and the GnRH/LH surge-generating system. To this end, we tested whether neonatal castration feminizes AVPV kisspeptin neurons and the LH surge-generating system in male rats and whether neonatal estradiol benzoate (EB) treatment suppresses the kisspeptin expression and the LH surge in female rats. Immunohistochemistry, in situ hybridization, and quantitative real-time RT-PCR were performed to investigate kisspeptin and Kiss1 mRNA expressions. Male rats were castrated immediately after birth, and females were treated with EB on postnatal Day 5. Neonatal castration caused an increase in AVPV kisspeptin expression at peptide and mRNA levels in the genetically male rats, and the animals showed surge-like LH release in the presence of the preovulatory level of estradiol (E2) at adulthood. On the other hand, neonatal EB treatment decreased the number of AVPV kisspeptin neurons and caused an absence of E2-induced LH surge in female rats. Semiquantitative RT-PCR analysis showed that neonatal steroidal manipulation affects Kiss1 expression but does not significantly affect gene expressions of neuropeptides (neurotensin and galanin) and enzymes or transporter for neurotransmitters (gamma-aminobutyric acid, glutamate, and dopamine) in the AVPV, suggesting that the manipulation specifically affects Kiss1 expressions. Taken together, our present results provide physiological evidence that neonatal testicular androgen causes the reduction of AVPV kisspeptin expression and failure of LH surge in genetically male rats. Thus, it is plausible that perinatal testicular androgen causes defeminization of the AVPV kisspeptin system, resulting in the loss of the surge system in male rats.


Assuntos
Androgênios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Diferenciação Sexual/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Contagem de Células , Dopamina/genética , Dopamina/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Galanina/genética , Galanina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Kisspeptinas , Masculino , Neurotensina/genética , Neurotensina/metabolismo , Orquiectomia , Ovariectomia , Proteínas/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
20.
Peptides ; 30(1): 49-56, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18775461

RESUMO

Various studies have attempted to unravel the physiological role of metastin/kisspeptin in the control of gonadotropin-releasing hormone (GnRH) release. A number of evidences suggested that the population of metastin/kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) is involved in generating a GnRH surge to induce ovulation in rodents, and thus the target of estrogen positive feedback. Females have an obvious metastin/kisspeptin neuronal population in the AVPV, but males have only a few cell bodies in the nucleus, suggesting that the absence of the surge-generating mechanism or positive feedback action in males is due to the limited AVPV metastin/kisspeptin neuronal population. On the other hand, the arcuate nucleus (ARC) metastin/kisspeptin neuronal population is considered to be involved in the regulation of tonic GnRH release. The ARC metastin/kisspeptin neurons show no sex difference in their expression, which is suppressed by gonadal steroids in both sexes. Thus, the ARC population of metastin/kisspeptin neurons is a target of estrogen negative feedback action on tonic GnRH release. The lactating rat model provided further evidence indicating that ARC metastin/kisspeptin neurons are involved in GnRH pulse generation, because pulsatile release of luteinizing hormone (LH) is profoundly suppressed by suckling stimulus and the LH pulse suppression is well associated with the suppression of ARC metastin/kisspeptin and KiSS-1 gene expression in lactating rats.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Proteínas/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Ciclo Estral/fisiologia , Retroalimentação Fisiológica , Feminino , Kisspeptinas , Lactação/fisiologia , Hormônio Luteinizante/metabolismo , Masculino , Neurônios/citologia , Neurônios/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA