RESUMO
Seaweeds of the red algal genus Laurencia are distributed worldwide in tropical, subtropical to temperate zones, growing in Japan from Hokkaido to Okinawa. Laurencia is highly difficult to classify morphologically because of a high degree of morphological variation within individual species. Nevertheless, Laurencia investigation is favored by organic chemists as it produces uniquely structured compounds. Halogenated secondary metabolites are considered to be used as chemical markers for chemical systematics (chemotaxonomy) of this troublesome genus. As a "weedy seaweed", Laurencia is not effectively utilized, yet it produces a variety of metabolites and thus, holds good potential for containing compounds with specific activity, especially in aspects of secondary metabolites. In this review, we reported significant morphological features to distinguish species in this genus, and the morphological features, habitat, distribution, and chemical composition that help discriminate Japanese Laurencia species.
Assuntos
Laurencia , Japão , Laurencia/química , Rodófitas/química , Rodófitas/classificaçãoRESUMO
The red algal genus Portieria is a prolific producer of halogenated monoterpenoids. In this study, we isolated and characterised monoterpenoids from the Okinawan red algae Portieria hornemannii. A new polyhalogenated cyclic monoterpenoid, 2(R)-chloro-1,6(S)-dibromo-3(8)(Z)-ochtoden-4(R)-ol (1), along with three known monoterpenoids, (2R,3(8)E,4S,6R)-6-bromo-2-chloro-1,4-oxido-3(8)-ochtodene (2), 1-bromo-2-chloroochtoda-3(8),5-dien-4-one (3), and 2-chloro-1-hydroxyochtoda-3(8),5-dien-4-one (4) were isolated from the methanol extract of three populations of P. hornemannii. These compounds were characterised using a combination of spectroscopic methods and chemical synthesis, and the absolute stereochemistry of compounds 1 and 2 was determined. In addition, all isolated compounds were screened for their anti-biofouling activity against the mussel Mytilus galloprovincialis, and 1 exhibited strong activity. Therefore, halogenated monoterpenoids have the potential to be used as natural anti-biofouling drugs.
Assuntos
Incrustação Biológica , Monoterpenos , Rodófitas , Animais , Incrustação Biológica/prevenção & controle , Halogenação , Estrutura Molecular , Monoterpenos/isolamento & purificação , Monoterpenos/química , Monoterpenos/farmacologia , Rodófitas/química , Guanetidina/química , Guanetidina/isolamento & purificação , Guanetidina/farmacologiaRESUMO
The marine red algal genus Laurencia has abundant halogenated secondary metabolites, which exhibit novel structural types and possess various unique biological potentials, including antifouling activity. In this study, we report the isolation, structure elucidation, and antifouling activities of two novel brominated diterpenoids, aplysin-20 aldehyde (1), 13-dehydroxyisoaplysin-20 (2), and its congeners. We screened marine red alga Laurencia venusta Yamada for their antifouling activity against the mussel Mytilus galloprovincialis. Ethyl acetate extracts of L. venusta from Hiroshima and Chiba, Japan, were isolated and purified, and the compound structures were identified using 1D and 2D NMR, HR-APCI-MS, IR, and chemical synthesis. Seven secondary metabolites were identified, and their antifouling activities were evaluated. Compounds 1, 2, and aplysin-20 (3) exhibited strong activities against M. galloprovincialis. Therefore, these compounds can be explored as natural antifouling drugs.
Assuntos
Incrustação Biológica , Diterpenos , Laurencia , Rodófitas , Incrustação Biológica/prevenção & controle , Diterpenos/farmacologia , Diterpenos/química , Laurencia/química , Estrutura Molecular , Rodófitas/químicaRESUMO
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.