Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Res ; 216(Pt 1): 114469, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195159

RESUMO

In order to investigate the impact of "Blue Sky War" implemented during 2018-2020 on carbonaceous aerosols in Beijing-Tianjin-Hebei (BTH) region, China, fine particulate matter (PM2.5) samples were collected simultaneously in Tianjin and Handan in three consecutive winters from 2018 to 2020. Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with the same thermal-optical methods and analysis protocols. Significant reductions in primary organic carbon (POC) and EC concentrations were observed both in Tianjin and Handan, with decreasing rates of 0.65 and 2.95 µg m-3 yr-1 for POC and 0.13 and 0.64 µg m-3 yr-1 for EC, respectively. The measured absorption coefficients of EC (babs, EC) also decreased year by year, with a decreasing rate of 1.82 and 6.16 Mm-1 yr-1 in Tianjin and Handan, respectively. The estimated secondary organic carbon (SOC) concentrations decreased first and then increased in both Tianjin and Handan, accounting for more than half of the total OC in winter of 2020-2021 and with increasing contributions especially in highly polluted days. SOC was recognized as one of key factors influencing EC light absorption. EC in the two cities was relatively more related to coal combustion and industrial sources. The reductions of primary carbonaceous components may be attributed to the air quality regulations targeting coal combustion and industrial sources emissions in BTH area. Potential source contribution function (PSCF) analysis results indicated that the major source areas of OC and EC in Tianjin were the southwest region of the sampling site, while the southeast areas for Handan. These findings demonstrated the effectiveness of air quality regulation in primary emissions in typical polluted cities in BTH region and highlighted the needs for further control and in-depth investigation of SOC formation along with implementation of air pollution control act in the future.


Assuntos
Poluentes Atmosféricos , Cidades , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Aerossóis/análise , Material Particulado/análise , Carvão Mineral/análise , Carbono/análise , Estações do Ano , China
2.
Environ Res ; 212(Pt A): 113144, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35341756

RESUMO

Brown carbon (BrC) has been attracting more and more attention owing to its significant effects on climate. However, the limited knowledge on its chemical composition and sources limits the precision of aerosol radiative forcing estimated by climate models. In this study, the chemical components of PM2.5 and optical properties of water-soluble BrC (WS-BrC) were investigated from atmospheric particles collected in summer and winter in Qingdao, China. On the whole, though there were slight diurnal variations, seasonal differences were more obvious. Due to the influence of emission sources and meteorological conditions, the heavier pollution of carbonaceous aerosols occurred in winter. By comparison, the absorption Ångström exponent (AAE) and mass absorption efficiency of WS-BrC at 365 nm (MAE365) showed that WS-BrC in winter had stronger wavelength dependence and light absorption capacity, which might be associated with biomass burning source contributions. This was further confirmed by a strong correlation between the light absorption coefficient at 365 nm (Abs365) and non-sea salt K+, an indicator for biomass burning emissions. Four fluorescent components (C1∼C4) with high unsaturation in water-soluble organic carbon (WSOC) were identified by excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis method, which showed that WSOC in Qingdao was mainly related to humic-like chromophores. It is worth noting that C1 was similar to the water-soluble chromophore of simulated marine aerosols, which proved that marine emissions do have a certain impact on atmospheric particulate matter in coastal areas. In addition, the results of source analysis showed that WS-BrC originated from different terrestrial sources in different seasons. The current results may help to improve the knowledge of optical properties of WS-BrC in coastal cities, optimize the global climate model and formulate air management policies.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano , Água/química
3.
Environ Res ; 212(Pt D): 113499, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35618007

RESUMO

Particulate matter (PM) has been considered to be closely related to human health, especially fine particulate matter. However, whether PM mass concentration alone is a good indicator for health impact remains a challenging question. In this study, emissions from residential coal combustion (RCC), one of the important PM sources in northern China, were tested to examine the relationship between the emission factors of particle-generated reactive oxygen species (ROS) (EFROS) and PM (EFPM). A total of 24 combinations of source tests were conducted, including eight types of coal with different geological maturities (two anthracites and six bituminous) burned in three types of stoves (one honeycomb coal stove, one old chunk stove, and one new chunk stove). Here, ROS was defined as generated hydroxyl radical (·OH) by PM, and results showed EFROS from 24 residential coal combustion varied greatly by nearly 20 times. EFROS ranged 0.78-14.85 and 2.99-12.91 mg kg-1 for the emissions from honeycomb and chunk coals, respectively. Moreover, the correlation between EFROS and EFPM was significantly positive in honeycomb coal emissions (r = 0.82, p < 0.05), but it was insignificant in chunk coal emissions (r = 0.07, p > 0.05). For honeycomb coal emissions, organic carbon (OC) was quite abundant in PM and it might be the predominant contributor to both EFPM and EFROS, resulting in a strong and positive correlation. For chunk coal emissions, high EFROS was mainly related to relatively high metal emissions in AN and LVB, while the metals were not major components in PM, leading to a poor correlation between EFPM and EFROS. Therefore, this study revealed that PM was not always positively correlated with ROS from residential coal burning, and the relationship was mainly determined by the compositions of PM, suggesting PM mass concentration alone may not be the best indicator for assessing health impacts.


Assuntos
Poluentes Atmosféricos , Utensílios Domésticos , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Humanos , Material Particulado/análise , Espécies Reativas de Oxigênio
4.
Environ Res ; 209: 112791, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35101394

RESUMO

Due to the lack of black carbon (BC) measurement data in some cases, elemental carbon (EC) is often used as a surrogate of BC, with a simple assumption that they are interchangeable. Such assumption will inevitably lead to uncertainties in radiative forcing estimation and health impact assessment. In order to quantitatively and systematically evaluate the relationship between BC and EC as well as factors responsible for their difference, 3-year collocated equivalent BC (eBC) and EC measurements with 1-h resolution were performed in Beijing, China continuously from 2016 to 2019. EBC concentration was measured by the multi-wavelength aethalometer (AE-33) based on optical analysis, while EC concentration was determined by semi-continuous OC/EC analyzer with thermal-optical method. The results showed that around 90% of eBC concentration was higher than that of EC, with average difference between eBC and EC as 1.21 µg m-3 (accounting for 33% of average eBC in Beijing). EBC and EC concentrations exhibited strong correlation (r = 0.90) during the whole study period, but the slopes (or eBC/EC ratio) and correlation coefficients varied across seasons (spring: 1.67 and 0.94; summer: 0.91 and 0.65; fall: 1.15 and 0.88; winter: 1.09 and 0.91, respectively). Based on the information from shell/core ratios by Single Particle Soot Photometer (SP2), source apportionment results by positive matrix factorization model, and chemical composition of PM2.5, the differences between eBC and EC concentrations were found to be primarily related to BC aging process and secondary components as evidenced by strong positive correlation with secondary species (e.g., secondary organic carbon and nitrate). This study provided seasonal specific conversion factors of eBC and EC in Beijing and helpful reference for other areas, which will contribute new knowledge of carbonaceous aerosol and reduce uncertainty in assessing future climate change and health studies of BC.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Carbono/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano , Fuligem/análise
5.
Environ Res ; 204(Pt C): 112324, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742712

RESUMO

Severe haze hovered over Harbin during the heating season of 2019-2020, making it one of the ten most polluted Chinese cities in January of 2020. Here we focused on the optical properties and sources of brown carbon (BrC) during the extreme atmospheric pollution periods. Enhanced formation of secondary BrC (BrCsec) was evident as relative humidity (RH) became higher, accompanied with a decrease of ozone but concurrent increases of aerosol water content and secondary inorganic aerosols. These features were generally similar to the characteristics of haze chemistry observed during winter haze events in the North China Plain, and indicated that heterogeneous reactions involving aerosol water might be at play in the formation of BrCsec, despite the low temperatures in Harbin. Although BrCsec accounted for a substantial fraction of brown carbon mass, its contribution to BrC absorption was much smaller (6 vs. 28%), pointing to a lower mass absorption efficiency (MAE) of BrCsec compared to primary BrC. In addition, emissions of biomass burning BrC (BrCBB) were inferred to increase with increasing RH, coinciding with a large drop of temperature. Since both the less absorbing BrCsec and the more absorbing BrCBB increased as RH became higher, the MAE of total BrC were largely unchanged throughout the measurement period. This study unfolded the contrast in the source apportionment results of BrC mass and absorption, and could have implications for the simulation of radiative forcing by brown carbon.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Estações do Ano
6.
Environ Sci Technol ; 55(23): 15724-15733, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806878

RESUMO

The composition and radiative forcing of light-absorbing brown carbon (BrC) aerosol remain poorly understood. Polycyclic aromatics (PAs) are BrC chromophores with fused benzene rings. Understanding the occurrence and significance of PAs in BrC is challenging due to a lack of standards for many PAs. In this study, we quantified polycyclic aromatic carbon (PAC), defined as the carbon of fused benzene rings, based on molecular markers (benzene polycarboxylic acids, BPCAs). Open biomass burning aerosols (OBBAs) of 22 rainforest plants were successively extracted with water and methanol for the analysis of water- and methanol-soluble PAC (WPAC and MPAC, respectively). PAC is an important fraction of water- and methanol-soluble organic carbon (WSOC and MSOC, respectively). WPAC/WSOC ranged from 0.03 to 0.18, and MPAC/MSOC was even higher (range: 0.16-0.80). The priority polycyclic aromatic hydrocarbons contributed less than 1% of MPAC. The mass absorption efficiency (MAE) of MSOC showed a strong linear correlation with MPAC/MSOC (r = 0.60-0.95, p < 0.01). The absorption Ångström exponent (AAE) of methanol-soluble BrC showed a strong linear correlation with the degree of aromatic condensation of MPAC, which was described by the average number of carboxylic groups of BPCA (r = -0.79, p < 0.01). This result suggested that PAC was a key fraction determining the light absorption properties (i.e., light absorptivity and wavelength dependence) of methanol-soluble BrC in OBBAs.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Metanol , Material Particulado/análise
7.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190325, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981431

RESUMO

Fine particulate matter has been a major concern in China as it is closely linked to issues such as haze, health and climate impacts. Since China released its new national air quality standard for fine particulate matter (PM2.5) in 2012, great efforts have been put into reducing its concentration and meeting the standard. Significant improvement has been seen in recent years, especially in Beijing, the capital city of China. This paper reviews how China understands its sources of fine particulate matter, the major contributor to haze, and the most recent findings by researchers. It covers the characteristics of PM2.5 in China, the major methods to understand its sources such as emission inventory and measurement networks, the major research programmes in air quality research, and the major measures that lead to successful control of fine particulate matter pollution. A great example of linking scientific findings to policy is the control of coal combustion from the residential sector in northern China. This review not only provides an overview of the fine particulate matter pollution problem in China, but also its experience of air quality management, which may benefit other countries facing similar issues. This article is part of a discussion meeting issue 'Air quality, past present and future'.

8.
Environ Sci Technol ; 53(1): 512-520, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30500188

RESUMO

Adverse health effects of ambient PM2.5 ( dp < 2.5 µm) can be associated with the production of reactive oxygen species (ROS), among which hydroxyl radical (•OH) is the most reactive. However, â€¢OH generated by PM2.5 has not been quantified and studied in the North China Plain (NCP), which has suffered from heavy air pollution in recent years. In this study, PM2.5 samples were collected at an urban site (Beijing) and a suburban site (Wangdu), extracted in a cell-free surrogate lung fluid (SLF), and •OH generated in the extracts were quantified. The results show that more •OH is produced on heavily polluted days than that on clean days (2.0 and 1.6 times higher in Beijing and Wangdu, respectively). The production of •OH per unit mass (ng/µg·PM2.5) decreases with the increase of ambient PM2.5 concentration because SO42-, NO3-, and NH4+ dominate the increased PM2.5, while these secondary inorganic components do not contribute to the generation of •OH. Trace metals (e.g., Fe, Cu, Se) and carbonaceous species (organic carbon and elemental carbon) correlate well with the •OH production, indicating that particles from combustion sources including coal combustion, vehicle exhaust, and industry contribute more to •OH generation.


Assuntos
Poluentes Atmosféricos , Material Particulado , Pequim , China , Monitoramento Ambiental , Radical Hidroxila , Estresse Oxidativo
9.
Environ Sci Technol ; 52(3): 1665-1674, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29244948

RESUMO

Levoglucosan (LG) has been widely identified as a specific marker for biomass burning (BB) sources and frequently utilized in estimating the BB contribution to atmospheric fine particles all over the world. However, this study provides direct evidence to show that coal combustion (CC) is also a source of LG, especially in the wintertime in Northern China, based on both source testing and ambient measurement. Our results show that low-temperature residential CC could emit LG with emission factors (EF) ranging from 0.3 to 15.9 mg kg-1. Ratios of LG to its isomers, mannosan and galactosan, differ between CC and BB emissions, and the wintertime ratios in Beijing ambient PM2.5 and source-specific tracers including carbon isotopic signatures all indicated a significant contribution from CC to ambient levoglucosan in winter in Beijing. The results suggest that LG cannot be used as a distinct source marker for biomass burning in special cases such as some cities in the northern China, where coal is still widely used in the residential and industrial sectors. Biomass burning sources could be overestimated, although such an over-estimation could vary spatially and temporally.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Pequim , China , Cidades , Monitoramento Ambiental , Glucose/análogos & derivados , Material Particulado
10.
Environ Sci Technol ; 49(4): 2038-43, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25569822

RESUMO

Thick haze plagued northeastern China in January 2013, strongly affecting both regional climate and human respiratory health. Here, we present dual carbon isotope constrained (Δ(14)C and δ(13)C) source apportionment for combustion-derived black carbon aerosol (BC) for three key hotspot regions (megacities): North China Plain (NCP, Beijing), the Yangtze River Delta (YRD, Shanghai), and the Pearl River Delta (PRD, Guangzhou) for January 2013. BC, here quantified as elemental carbon (EC), is one of the most health-detrimental components of PM2.5 and a strong climate warming agent. The results show that these severe haze events were equally affected (∼ 30%) by biomass combustion in all three regions, whereas the sources of the dominant fossil fuel component was dramatically different between north and south. In the NCP region, coal combustion accounted for 66% (46-74%, 95% C.I.) of the EC, whereas, in the YRD and PRD regions, liquid fossil fuel combustion (e.g., traffic) stood for 46% (18-66%) and 58% (38-68%), respectively. Taken together, these findings suggest the need for a regionally-specific description of BC sources in climate models and regionally-tailored mitigation to combat severe air pollution events in East Asia.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono/análise , Monitoramento Ambiental/estatística & dados numéricos , Fuligem/análise , Aerossóis/análise , Biomassa , China , Clima , Carvão Mineral , Ásia Oriental , Combustíveis Fósseis , Humanos , Exposição por Inalação , Material Particulado/análise
11.
J Environ Sci (China) ; 29: 62-70, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25766014

RESUMO

Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 µm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.


Assuntos
Poluentes Atmosféricos/química , Espectrometria de Massas/instrumentação , Tamanho da Partícula , Material Particulado/química , Aerossóis , China , Espectrometria de Massas/métodos , Oceanos e Mares , Fumaça , Cloreto de Sódio , Fatores de Tempo
12.
J Hazard Mater ; 465: 133175, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38086305

RESUMO

Fog significantly affects the air quality and human health. To investigate the health effects and mechanisms of atmospheric fine particulate matter (PM2.5) during fog episodes, PM2.5 samples were collected from the coastal suburb of Qingdao during different seasons from 2021 to 2022, with the major chemical composition in PM2.5 analyzed. The oxidative potential (OP) of PM2.5 was determined using the dithiothreitol (DTT) method. A positive matrix factorization model was adopted for PM2.5. Interpretable machine learning (IML) was used to reveal and quantify the key components and sources affecting OP. PM2.5 exhibited higher oxidative toxicity during fog episodes. Water-soluble organic carbon (WSOC), NH4+, K+, and water-soluble Fe positively affected the enhancement of DTTV (volume-based DTT activity) during fog episodes. The IML analysis demonstrated that WSOC and K+ contributed significantly to DTTV, with values of 0.31 ± 0.34 and 0.27 ± 0.22 nmol min-1 m-3, respectively. Regarding the sources, coal combustion and biomass burning contributed significantly to DTTV (0.40 ± 0.38 and 0.39 ± 0.36 nmol min-1 m-3, respectively), indicating the significant influence of combustion-related sources on OP. This study provides new insights into the effects of PM2.5 compositions and sources on OP by applying IML models.

13.
Water Res ; 257: 121672, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705064

RESUMO

The transfer of particulate organic carbon (POC) to dissolved organic carbon (DOC; OC transferP-D) is crucial for the marine carbon cycle. Sediment resuspension driven by hydrodynamic forcing can affect the burial of sedimentary POC and benthic biological processes in marginal sea. However, the role of sediment grain size fraction on OC transferP-D and the subsequent impact on OC cycling remain unknown. Here, we conduct sediment resuspension simulations by resuspending grain-size fractionated sediments (< 20, 20-63, and > 63 µm) into filtered seawater, combined with analyses of OC content, optical characteristics, 13C and 14C isotope compositions, and molecular dynamics simulations to investigate OC transferP-D and its regulations on OC bioavailability under sediment resuspension. Our results show that the relative intensities of terrestrial humic-like OC (refractory DOC) increase in resuspension experiments of < 20, 20-63, and > 63 µm sediments by 0.14, 0.01, and 0.03, respectively, likely suggesting that sediment resuspension drives refractory DOC transfer into seawater. The variations in the relative intensities of microbial protein-like DOC are linked to the change of terrestrial humic-like OC, accompanied by higher DOC content and reactivity in seawater, particularly in finer sediments resuspension experiments. This implies that transferred DOC likely fuels microbial growth, contributing to the subsequent enhancement of DOC bioavailability in seawater. Our results also show that the POC contents increase by 0.35 %, 0.66 %, and 0.93 % in < 20, 20-63, and > 63 µm resuspension experiments at the end of incubation, respectively. This suggests that the re-absorption of OC on particles may be a significant process, but previously unrecognized during sediment resuspension. Overall, our findings suggest that sediment resuspension promotes the OC transferP-D, and the magnitudes of OC transferP-D further influence the DOC and POC properties by inducing microbial production and respiration. These processes significantly affect the dynamics and recycling of biological carbon pump in shallow marginal seas.


Assuntos
Ciclo do Carbono , Carbono , Sedimentos Geológicos , Água do Mar , Sedimentos Geológicos/química , Água do Mar/química , Oceanos e Mares
14.
Sci Total Environ ; 932: 172929, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703852

RESUMO

Firework (FW) events occur during various festivals worldwide and substantially negatively influence both air quality and human health. However, the effects of FWs on the chemical properties and formation of organic aerosols are far from clear. In this study, fine particulate matter (PM2.5) samples were collected in a suburban area in Qingdao, China during the Chinese Spring Festival. The concentrations of chemical species (especially carbonaceous components) in PM2.5 were measured using a combination of several state-of-the-art techniques. Our results showed that mass concentrations of water-soluble sulfate, potassium and chloride ions, and organic carbon drastically increased and became the predominant components in PM2.5 during FW events. Correspondingly, both the number and fractional contributions of sulfur (S)-containing subgroups (e.g., CHOS and CHONS compounds) and some chlorine (Cl)-containing organic (e.g., CHOSCl and CHONSCl) compounds identified using ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) increased. The S- and Cl-containing compounds unique to the FW display period were identified, and their chemical characterization, sources, and formation mechanisms were elucidated by combining FT-ICR MS and quantum chemical calculations. Our results suggest that FW emissions play notable roles in both primary and secondary organic aerosol formation, especially for CHOS- and Cl-containing organic compounds.

15.
Sci Total Environ ; 854: 158505, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058339

RESUMO

Carbonaceous substances in industrial emissions are harmful to human health, air quality, and climate change. Owing to the existence of various fuel types and different technological processes, the characterization of carbonaceous substances from industrial emissions varies significantly, which causes a large uncertainty in source apportionment. Therefore, nine typical industrial sources were selected and separated into two types: stationary combustion and industrial process sources. The emission factors based on different units and profiles of carbonaceous substances, including organic carbon (OC), elemental carbon (EC), subgroups of OC and EC, EPA priority polycyclic aromatic hydrocarbons (PPAHs), methyl PAHs (MPAHs), and n-alkanes emitted from nine industrial sources were obtained. The results showed that the difference in dust removal efficiency or emission of other auxiliary materials in the industrial process could cause different emission factors for carbonaceous substances. Furthermore, the emission factors of fine particulate matter (PM2.5), OC, and EC for coal-fired plant were significantly lower than those of residential coal combustion. For profiles of carbonaceous substances in different industrial sources, the relative fractions of OC subgroups emitted from stationary combustion sources were lower than those from industrial process sources, whereas the proportions of EC were higher. The source profiles of nonpolar organic matter emitted from industrial process sources were clearly different from those of industrial stationary source emissions. For the four industrial process sources, the proportion of n-alkanes was significantly higher than that of PAHs, whereas the source profiles for different industrial stationary sources were extremely different. Finally, the concentrations of carbonaceous substances obtained in this study were lower than those reported in previous studies, indicating that marked reduction results were achieved by implementing reduction measures.

16.
Sci Total Environ ; 904: 166868, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678527

RESUMO

Ships could emit an abundance intermediate volatility organic compounds (IVOCs). In recent years, many studies on the emission characteristics of IVOCs have focused on the burning of heavy fuel oil by ocean-going ships; however, few have focused on inland vessels which have a more significant impact on air quality and human health owing to their closer proximity to cities than ocean-going ships. In this study, the IVOC emission factors (EFIVOCs) of three inland vessels were determined using a dilution sampling system considering different influencing factors (ship age and operating conditions). The results showed that the EFIVOCs values ranged from 869.9 to 7607 mg/kg fuel, with an average of 4128 ± 2703 mg/kg fuel. In addition, the age of the vessel was found to have a dramatic effect on emissions with the average EFIVOCs of inland vessels aged >10 years was 4300 ± 4319, 5769, and 6484 ± 1586 mg/kg fuel under cruising, idling, and maneuvering conditions, respectively, while that of vessels <10 years old was 1180 ± 328.3 mg/kg fuel when maneuvering. The percentages of emission factors for unresolved complex mixture (UCM), normal alkanes (n-alkanes), branched alkanes (b-alkanes), and polycyclic aromatic hydrocarbons (PAHs) from inland vessels were 82.1 ± 2.6 %, 5.2 ± 0.9 %, 10.6 ± 2.0 % and 2.0 ± 0.6 % of the total IVOCs, respectively. The secondary organic aerosols (SOA) production of inland vessels was estimated to be 1212 ± 801.7 mg/kg fuel, which was substantially higher than those of diesel vehicles, non-road construction machinery, and gasoline vehicles reported by other researches. Moreover, based on the ship movement and measured EFIVOCs data, the IVOCs emission inventory of inland vessels in Jiangsu Province and China in 2016 was 4.2 ± 2.8 and 32.0 ± 21.0 Gg respectively, which was comparable to those from diesel vehicle emissions.

17.
Toxics ; 11(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37368640

RESUMO

The knowledge of the spatial distribution, sources, and air-soil exchange of polycyclic aromatic compounds (PACs) in an oilfield area is essential to the development of effective control practices of PAC pollution. In this study, 48 passive air samples and 24 soil samples were collected during 2018-2019 in seven functional areas (e.g., urban, oil field, suburban, industrial, agricultural, near pump units, and background) in the Yellow River Delta (YRD) where the Shengli Oilfield is located, and 18 parent polycyclic aromatic hydrocarbons (PAHs) and five alkylated-PAHs (APAHs) were analyzed from all the air and soil samples. The ΣPAHs in the air and soil ranged from 2.26 to 135.83 ng/m3 and 33.96 to 408.94 ng/g, while the ΣAPAHs in the atmosphere and soil ranged from 0.04 to 16.31 ng/m3 and 6.39 to 211.86 ng/g, respectively. There was a downward trend of atmospheric ΣPAH concentrations with increasing the distance from the urban area, while both ΣPAH and ΣAPAH concentrations in the soil decreased with distance from the oilfield area. PMF analyses show that for atmospheric PACs, coal/biomass combustion was the main contributor in urban, suburban, and agricultural areas, while crude production and processing source contributes more in the industrial and oilfield area. For PACs in soil, densely populated areas (industrial, urban, and suburban) are more affected by traffic sources, while oilfield and near-pump unit areas are under the impact of oil spills. The fugacity fraction (ff) results indicated that the soil generally emitted low-molecular-weight PAHs and APAHs and act as a sink for high-molecular-weight PAHs. The incremental lifetime cancer risk (ILCR) of Σ(PAH+APAH) in both the air and soil, were below the threshold (≤10-6) set by the US EPA.

18.
Environ Pollut ; 316(Pt 2): 120597, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343856

RESUMO

Sand and dust have significant impacts on air quality, climate, and human health. To investigate the influences of dust storms on chemical characterization and source contributions of fine particulate matter (PM2.5) in areas with different distances from dust source regions, PM2.5 and associated chemical composition were measured in two industrial cities with one near sand sources (i.e., Wuhai) and the other far from sand sources (i.e., Jinan) in northern China in March 2021. Results showed that PM mass concentrations significantly increased and exceeded the Chinese National Ambient Air Quality standard during the dust events, with absolute concentrations and fractional contributions of PM2.5-bound crustal and trace elements increased while secondary inorganic ions decreased at both sites. Crustal materials dominated the increased PM2.5 mass from non-dust period to dust period in both cities. These were further evidenced by PM2.5 source apportionment results from positive matrix factorization model. During the dust events, dust sources contributed up to 88% of PM2.5 mass in Wuhai and ∼38% of PM2.5 mass in Jinan, a city about thousands of kilometers away from the sand source. Besides, the measurement data indicated that dust from northwest China may also bring along with high abundance of organic matter and vanadium. Secondary and traffic sources were two of the most important source contributors to PM2.5 in both cities during the non-dust periods. However, the near sand source city was more susceptible to the aggravating effects of dust and minerals, with much higher contributions by crustal materials (∼47%, from the aspect of chemical components) and dust-related sources (∼26%, from the aspect of sources) to PM2.5 mass even during non-dust periods. This study highlighted the urgent need for more action and effective control of sand sources to reduce the impact on air quality in downstream regions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/análise , Poeira/análise , Poluentes Atmosféricos/análise , Areia , Monitoramento Ambiental/métodos , China , Emissões de Veículos/análise , Estações do Ano
19.
Sci Total Environ ; 889: 164062, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207767

RESUMO

Dust storms are a significant concern because of their adverse effects on ambient air quality and human health. To investigate the evolution of dust storms during long-distance transport and its impacts on air quality and human health risks in cities along the transport pathway, we monitored the major fraction of dust (i.e., particle-bound elements) online in four cities in northern China during March 2021. Three dust events originating from the Gobi Desert of North China and Mongolia and the Taklimakan Desert of Northwest China were captured. We investigated the source regions of dust storms using daily multi-sensor absorbing aerosol index products, backward trajectories, and specific element ratios, identified and quantified sources of particle-bound elements using Positive Matrix Factorization model, and calculated the carcinogenic and non-carcinogenic risks of elements using a health risk assessment model. Our results indicated that under the influence of dust storms, mass concentrations of crustal elements increased up to dozens of times in cities near the dust source and up to ten times in cities farther from the source. In contrast, anthropogenic elements increased less or even decreased, depending on the relative contributions of the increase caused by accumulation of dust itself and entrainment along the transport path and the decrease caused by dilution of high wind speeds. Si/Fe ratio was found to be a valuable indicator for characterizing the attenuation of the amount of dust along its transport pathways, especially for the case originated from northern source regions. This study highlights the significant role of source regions, intensity and attenuation rates of dust storms, and wind speeds in determining the increased levels of element concentrations during dust storms and its associated impacts on downwind areas. Furthermore, non-carcinogenic risks of particle-bound elements increased at all sites during dust events, emphasizing the importance of personal exposure protection during dust storms.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poeira/análise , Vento , China , Cidades , Material Particulado/análise
20.
Mar Environ Res ; 188: 106000, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121173

RESUMO

Organic and Elemental Carbon (OEC) is widely applied in the atmospheric sciences for determining carbon content and distinguishing black carbon contents of aerosols, with an advantage that OEC-based approach can provide thermograms derived from carbonaceous material. It is potential to adopt the advantage to measure the content and composition of organic carbon (OC)% in marine sediments. Here, we utilized the OEC analyzer to measure the OC% in marine sediment based on the pyrolytic oxidation principle, and obtain the OC-derived carbon dioxide (CO2) thermograms. We examined marine sediments and reference materials to understand the stability and reproducibility of OC% measurements using our approach. The findings indicate that the OC% results (ranging from 1.44 to 1.59%, ave. 1.55 ± 0.03%, n = 64) based on this approach are accurate. In addition, CO2 concentration thermograms obtained by repeated measurements exhibit a strong reproducibility. Our approach can thus provide the concentrations of thermally-evolved CO2 with increasing heating temperature to deeply understand the reactivities of OC and the compositions in sediments. We suggest that the OEC-based OC% measurement is credible when samples preparation is well-performed (e.g., suitable sample mass and uniformly distributed loading). To sum up, we provide a means to accurately determine the OC% in marine sediments in terms of the ramped-pyrolysis principle.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Reprodutibilidade dos Testes , Dióxido de Carbono , Monitoramento Ambiental/métodos , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA