Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Methods ; 21(7): 1288-1297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877316

RESUMO

Precision pharmacology aims to manipulate specific cellular interactions within complex tissues. In this pursuit, we introduce DART.2 (drug acutely restricted by tethering), a second-generation cell-specific pharmacology technology. The core advance is optimized cellular specificity-up to 3,000-fold in 15 min-enabling the targeted delivery of even epileptogenic drugs without off-target effects. Additionally, we introduce brain-wide dosing methods as an alternative to local cannulation and tracer reagents for brain-wide dose quantification. We describe four pharmaceuticals-two that antagonize excitatory and inhibitory postsynaptic receptors, and two that allosterically potentiate these receptors. Their versatility is showcased across multiple mouse-brain regions, including cerebellum, striatum, visual cortex and retina. Finally, in the ventral tegmental area, we find that blocking inhibitory inputs to dopamine neurons accelerates locomotion, contrasting with previous optogenetic and pharmacological findings. Beyond enabling the bidirectional perturbation of chemical synapses, these reagents offer intersectional precision-between genetically defined postsynaptic cells and neurotransmitter-defined presynaptic partners.


Assuntos
Sinapses , Animais , Camundongos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Sinapses/metabolismo , Encéfalo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Feminino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(39): 19717-19726, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31451636

RESUMO

Giant ankyrin-G (gAnkG) coordinates assembly of axon initial segments (AISs), which are sites of action potential generation located in proximal axons of most vertebrate neurons. Here, we identify a mechanism required for normal neural development in humans that ensures ordered recruitment of gAnkG and ß4-spectrin to the AIS. We identified 3 human neurodevelopmental missense mutations located in the neurospecific domain of gAnkG that prevent recruitment of ß4-spectrin, resulting in a lower density and more elongated pattern for gAnkG and its partners than in the mature AIS. We found that these mutations inhibit transition of gAnkG from a closed configuration with close apposition of N- and C-terminal domains to an extended state that is required for binding and recruitment of ß4-spectrin, and normally occurs early in development of the AIS. We further found that the neurospecific domain is highly phosphorylated in mouse brain, and that phosphorylation at 2 sites (S1982 and S2619) is required for the conformational change and for recruitment of ß4-spectrin. Together, these findings resolve a discrete intermediate stage in formation of the AIS that is regulated through phosphorylation of the neurospecific domain of gAnkG.


Assuntos
Anquirinas/genética , Segmento Inicial do Axônio/metabolismo , Citoesqueleto de Actina/metabolismo , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Anquirinas/metabolismo , Segmento Inicial do Axônio/fisiologia , Axônios/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Vertebrados/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(40): 12528-33, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392562

RESUMO

Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins.


Assuntos
Arritmias Cardíacas/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Saúde da Família , Feminino , Predisposição Genética para Doença/genética , Células HEK293 , Humanos , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Linhagem , Ligação Proteica
4.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38766037

RESUMO

When animals unexpectedly fail, their dopamine neurons undergo phasic inhibition that canonically drives extinction learning-a cognitive-flexibility mechanism for discarding outdated strategies. However, the existing evidence equates natural and artificial phasic inhibition, despite their spatiotemporal differences. Addressing this gap, we targeted a GABAA-receptor antagonist precisely to dopamine neurons, yielding three unexpected findings. First, this intervention blocked natural phasic inhibition selectively, leaving tonic activity unaffected. Second, blocking natural phasic inhibition accelerated extinction learning-opposite to canonical mechanisms. Third, our approach selectively benefitted perseverative mice, restoring rapid extinction without affecting new reward learning. Our findings reveal that extinction learning is rapid by default and slowed by natural phasic inhibition-challenging foundational learning theories, while delineating a synaptic mechanism and therapeutic target for cognitive rigidity.

5.
J Neurosci ; 29(32): 10038-46, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19675237

RESUMO

Activation of muscarinic cholinergic receptors on pyramidal cells of the cerebral cortex induces the appearance of a slow afterdepolarization that can sustain autonomous spiking after a brief excitatory stimulus. Accordingly, this phenomenon has been hypothesized to allow for the transient storage of memory traces in neuronal networks. Here we investigated the molecular basis underlying the muscarinic receptor-induced afterdepolarization using molecular biological and electrophysiological strategies. We find that the ability of muscarinic receptors to induce the inward aftercurrent underlying the slow afterdepolarization is inhibited by expression of a Galpha(q-11) dominant negative and is also markedly reduced in a phospholipase C beta1 (PLCbeta1) knock-out mouse. Furthermore, we show, using a genetically encoded biosensor, that activation of muscarinic receptor induces the breakdown of phosphatidylinositol 4,5-bisphosphate in pyramidal cells. These results indicate that the Galpha(q-11)/PLCbeta1 cascade plays a key role in the ability of muscarinic receptors to signal the inward aftercurrent. We have shown previously that the muscarinic afterdepolarization is mediated by a calcium-activated nonselective cation current, suggesting the possible involvement of TRPC channels. We find that expression of a TRPC dominant negative inhibits, and overexpression of wild-type TRPC5 or TRPC6 enhances, the amplitude of the muscarinic receptor-induced inward aftercurrent. Furthermore, we find that coexpression of TRPC5 and T-type calcium channels is sufficient to reconstitute a muscarinic receptor-activated inward aftercurrent in human embryonic kidney HEK-293 cells. These results indicate that TRPC channels mediate the muscarinic receptor-induced slow afterdepolarization seen in pyramidal cells of the cerebral cortex and suggest a possible role for TRPC channels in mnemonic processes.


Assuntos
Córtex Cerebral/fisiologia , Potenciais da Membrana/fisiologia , Células Piramidais/fisiologia , Receptores Muscarínicos/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Canais de Cálcio Tipo T/metabolismo , Linhagem Celular , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Ratos , Transdução de Sinais
6.
J Pharmacol Exp Ther ; 335(1): 51-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660126

RESUMO

Ethanol (EtOH) promotes GABAergic synaptic transmission in the central nervous system. We have shown that EtOH enhances the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents less powerfully in hippocampal CA1 pyramidal neurons from adolescent animals compared with those from adults. However, we have also shown that EtOH promotes the firing of hippocampal interneurons, located in stratum lacunosum moleculare (SLM), from adolescent animals more potently than in those from adults. Thus the latter finding would seem to be inconsistent with the former. To understand this apparent inconsistency, we have now assessed the effects of EtOH on a different subpopulation of hippocampal interneurons, those with somata located in the stratum oriens (SO). We found that EtOH-induced enhancement of the frequency of spontaneous action potentials (sAPs) was less in interneurons from adolescent rats compared with those from adults. In addition, EtOH-induced reduction of the afterhyperpolarization decay time constant (τ(slow)) was less pronounced in interneurons from adolescent rats, as was the EtOH-induced increase in the amplitude of the hyperpolarization-activated cation current, I(h). The effect of EtOH on sAP firing frequency was blocked by application of the I(h) antagonist 4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride (ZD7288). These results indicate that although EtOH promotes the firing of hippocampal interneurons, through promotion of I(h), the developmental expression of this effect differs between interneurons with somata located in the SO and SLM.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Eletrofisiologia , Hipocampo/crescimento & desenvolvimento , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Biol Psychiatry ; 85(7): 534-543, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466882

RESUMO

BACKGROUND: Autism spectrum disorder involves neurodevelopmental dysregulations that lead to visible symptoms at early stages of life. Many autism spectrum disorder-related mechanisms suggested by animal studies are supported by demonstrated improvement in autistic-like phenotypes in adult animals following experimental reversal of dysregulated mechanisms. However, whether such mechanisms also act at earlier stages to cause autistic-like phenotypes is unclear. METHODS: We used Shank2-/- mice carrying a mutation identified in human autism spectrum disorder (exons 6 and 7 deletion) and combined electrophysiological and behavioral analyses to see whether early pathophysiology at pup stages is different from late pathophysiology at juvenile and adult stages and whether correcting early pathophysiology can normalize late pathophysiology and abnormal behaviors in juvenile and adult mice. RESULTS: Early correction of a dysregulated mechanism in young mice prevents manifestation of autistic-like social behaviors in adult mice. Shank2-/- mice, known to display N-methyl-D-aspartate receptor (NMDAR) hypofunction and autistic-like behaviors at postweaning stages after postnatal day 21 (P21), show the opposite synaptic phenotype-NMDAR hyperfunction-at an earlier preweaning stage (∼P14). Moreover, this NMDAR hyperfunction at P14 rapidly shifts to NMDAR hypofunction after weaning (∼P24). Chronic suppression of the early NMDAR hyperfunction by the NMDAR antagonist memantine (P7-P21) prevents NMDAR hypofunction and autistic-like social behaviors from manifesting at later stages (∼P28 and P56). CONCLUSIONS: Early NMDAR hyperfunction leads to late NMDAR hypofunction and autistic-like social behaviors in Shank2-/- mice, and early correction of NMDAR dysfunction has the long-lasting effect of preventing autistic-like social behaviors from developing at later stages.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Comportamento Social , Fatores Etários , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
8.
Science ; 366(6472): 1486-1492, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857479

RESUMO

Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.


Assuntos
Síndrome de Angelman/metabolismo , Canais de Cálcio Tipo N/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/fisiopatologia , Animais , Epilepsia/metabolismo , Humanos , Camundongos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Convulsões/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Transl Psychiatry ; 8(1): 94, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700290

RESUMO

We previously reported a new line of Shank3 mutant mice which led to a complete loss of Shank3 by deleting exons 4-22 (Δe4-22) globally. Δe4-22 mice display robust ASD-like behaviors including impaired social interaction and communication, increased stereotypical behavior and excessive grooming, and a profound deficit in instrumental learning. However, the anatomical and neural circuitry underlying these behaviors are unknown. We generated mice with Shank3 selectively deleted in forebrain, striatum, and striatal D1 and D2 cells. These mice were used to interrogate the circuit/brain-region and cell-type specific role of Shank3 in the expression of autism-related behaviors. Whole-cell patch recording and biochemical analyses were used to study the synaptic function and molecular changes in specific brain regions. We found perseverative exploratory behaviors in mice with deletion of Shank3 in striatal inhibitory neurons. Conversely, self-grooming induced lesions were observed in mice with deletion of Shank3 in excitatory neurons of forebrain. However, social, communicative, and instrumental learning behaviors were largely unaffected in these mice, unlike what is seen in global Δe4-22 mice. We discovered unique patterns of change for the biochemical and electrophysiological findings in respective brain regions that reflect the complex nature of transcriptional regulation of Shank3. Reductions in Homer1b/c and membrane hyper-excitability were observed in striatal loss of Shank3. By comparison, Shank3 deletion in hippocampal neurons resulted in increased NMDAR-currents and GluN2B-containing NMDARs. These results together suggest that Shank3 may differentially regulate neural circuits that control behavior. Our study supports a dissociation of Shank3 functions in cortical and striatal neurons in ASD-related behaviors, and it illustrates the complexity of neural circuit mechanisms underlying these behaviors.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Corpo Estriado/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Prosencéfalo/fisiopatologia , Animais , Comportamento Animal , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Proteínas de Arcabouço Homer/metabolismo , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Fenótipo , Prosencéfalo/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Comportamento Social , Sinapses/metabolismo
10.
J Neurosci ; 26(9): 2522-30, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16510730

RESUMO

Regulator of G-protein signaling 9-1 (RGS9-1) and RGS9-2 are highly related RGS proteins with distinctive C termini arising from alternative splicing of RGS9 gene transcripts. RGS9-1 is expressed in photoreceptors where it functions as a regulator of transducin. In contrast, RGS9-2 is abundantly expressed in the brain, especially in basal ganglia, where its specific function remains poorly understood. To gain insight into the function of RGS9-2, we screened a human cDNA library for potential interacting proteins. This screen identified a strong interaction between RGS9-2 and alpha-actinin-2, suggesting a possible functional relationship between these proteins. Consistent with this idea, RGS9-2 and alpha-actinin-2 coimmunoprecipitated after coexpression in human embryonic kidney 293 (HEK-293) cells. Furthermore, endogenous RGS9-2 and alpha-actinin-2 could also be coimmunoprecipitated from extracts of rat striatum, an area highly enriched in both these proteins. These results supported the idea that RGS9-2 and alpha-actinin-2 could act in concert in central neurons. Like alpha-actinin-2, RGS9-2 coimmunoprecipitated NMDA receptors from striatal extracts, suggesting an interaction between RGS9-2, alpha-actinin-2, and NMDA receptors. Previous studies have shown that alpha-actinin mediates calcium-dependent inactivation of NMDA receptors. In HEK-293 cells expressing NMDA receptors, expression of RGS9-2 significantly modulated this form of NMDA receptor inactivation. Furthermore, this modulation showed remarkable preference for NMDA receptor inactivation mediated by alpha-actinin-2. Using a series of deletion constructs, we localized this effect to the RGS domain of the protein. These results identify an unexpected functional interaction between RGS9-2 and alpha-actinin-2 and suggest a potential novel role for RGS9-2 in the regulation of NMDA receptor function.


Assuntos
Actinina/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/fisiologia , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting/métodos , Linhagem Celular , Clonagem Molecular/métodos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Interações Medicamentosas , Estimulação Elétrica/métodos , Regulação da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , N-Metilaspartato/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Transfecção/métodos , Técnicas do Sistema de Duplo-Híbrido
11.
J Gen Physiol ; 149(2): 277-293, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28087622

RESUMO

Increased "persistent" current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD-CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)-like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.


Assuntos
Arritmias Cardíacas/genética , Calmodulina/metabolismo , Epilepsia/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Mutação , Ligação Proteica , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/genética
12.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046483

RESUMO

Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24-/- mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.


Assuntos
Transtorno Bipolar/genética , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Anfetamina/farmacologia , Anedonia , Animais , Antimaníacos/uso terapêutico , Comportamento Animal , Estimulantes do Sistema Nervoso Central/farmacologia , Transtornos Cronobiológicos/tratamento farmacológico , Transtornos Cronobiológicos/genética , Disfunção Cognitiva/genética , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Compostos de Lítio/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , N-Metilaspartato/metabolismo , Fenótipo , Prosencéfalo/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transtornos do Comportamento Social/genética , Sinapses/metabolismo
13.
Elife ; 3: e04193, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25269146

RESUMO

Rapid firing of cerebellar Purkinje neurons is facilitated in part by a voltage-gated Na(+) (NaV) 'resurgent' current, which allows renewed Na(+) influx during membrane repolarization. Resurgent current results from unbinding of a blocking particle that competes with normal channel inactivation. The underlying molecular components contributing to resurgent current have not been fully identified. In this study, we show that the NaV channel auxiliary subunit FGF14 'b' isoform, a locus for inherited spinocerebellar ataxias, controls resurgent current and repetitive firing in Purkinje neurons. FGF14 knockdown biased NaV channels towards the inactivated state by decreasing channel availability, diminishing the 'late' NaV current, and accelerating channel inactivation rate, thereby reducing resurgent current and repetitive spiking. Critical for these effects was both the alternatively spliced FGF14b N-terminus and direct interaction between FGF14b and the NaV C-terminus. Together, these data suggest that the FGF14b N-terminus is a potent regulator of resurgent NaV current in cerebellar Purkinje neurons.


Assuntos
Cerebelo/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Células de Purkinje/metabolismo , Canais de Sódio/metabolismo , Potenciais de Ação , Animais , Fatores de Crescimento de Fibroblastos/química , Genes Dominantes , Ativação do Canal Iônico , Cinética , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Ligação Proteica , RNA Interferente Pequeno/metabolismo
14.
Nat Commun ; 5: 4896, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25232683

RESUMO

Ca(2+) regulates voltage-gated Na(+) (NaV) channels, and perturbed Ca(2+) regulation of NaV function is associated with epilepsy syndromes, autism and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca(2+) affects NaV channel function. Here we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor and Ca(2+)/calmodulin (Ca(2+)/CaM). These structures rule out direct binding of Ca(2+) to the NaV CTD and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca(2+) could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations.


Assuntos
Cálcio/química , Calmodulina/química , Canal de Sódio Disparado por Voltagem NAV1.5/química , Sequência de Aminoácidos , Cristalografia por Raios X , Citosol/metabolismo , Fatores de Crescimento de Fibroblastos/química , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
15.
Cell Rep ; 4(1): 66-75, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23831029

RESUMO

Fibroblast growth factor homologous factors (FHFs) are not growth factors, but instead bind to voltage-gated Na+ channels (NaV) and regulate their function. Mutations in FGF14, an FHF that is the locus for spinocerebellar ataxia 27 (SCA27), are believed to be pathogenic because of a dominant-negative reduction of NaV currents in cerebellar granule cells. Here, we demonstrate that FGF14 also regulates members of the presynaptic CaV2 Ca2+ channel family. Knockdown of FGF14 in granule cells reduced Ca2+ currents and diminished vesicular recycling, a marker for presynaptic Ca2+ influx. As a consequence, excitatory postsynaptic currents (EPSCs) at the granule cell to Purkinje cell synapse were markedly diminished. Expression of the SCA27-causing FGF14 mutant in granule cells exerted a dominant-negative reduction in Ca2+ currents, vesicular recycling, and the resultant EPSCs in Purkinje cells. Thus, FHFs are multimodal, regulating several discrete neuronal signaling events. SCA27 most likely results at least in part from dysregulation of Ca2+ channel function.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Potenciais Pós-Sinápticos Excitadores , Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Camundongos , Mutação , Transporte Proteico , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Ratos , Ratos Wistar
16.
Brain Res Bull ; 90: 142-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23107646

RESUMO

Levetiracetam (LEV) is a widely used antiepileptic agent for partial refractory epilepsy in humans. LEV has unique antiepileptic effects in that it does not inhibit electroshock- or pentylenetetrazol-induced convulsion, but does inhibit seizures in kindling animal and spontaneously epileptic rat (SER: zi/zi, tm/tm) that shows both tonic convulsion and absence-like seizures. LEV also has unique characteristics in terms of its antiepileptic mechanism; it has no activity on Na⁺ and K⁺ channels or on glutamate and GABA(A) receptors. Recently, we found that LEV inhibits the depolarization shift and accompanying repetitive firing induced by mossy fiber stimulation in CA3 neurons of SER hippocampal slices. Therefore, this study was performed to determine whether LEV could inhibit the voltage-activated L-type Ca²âº current of hippocampal CA3 neurons obtained from SER and the non-epileptic Wistar rat. As previously reported, SER CA3 neurons were classified into type 1 and type 2 neurons. The application of LEV (100 µM) elevated the threshold for activation of the Ca²âº current, which was lowered in SER type 1 neurons and reduced the current size. Type 2 neurons of SER have a similar current-voltage relationship to Wistar rat neurons and the decay component of Ca²âº current during depolarization pulse in type 2 neurons was found to be smaller than that in Wistar rat neurons. LEV (100 µM) also reduced Ca²âº current in SER type 2 neurons. The effects of LEV were examined on such type 2 SER hippocampal CA3 neurons, compared with those on Wistar rat CA3 neurons. Application of LEV (10 µM) produced a significant decrease of amplitude of the Ca²âº current in SER neurons, although at this concentration of LEV there was no statistically significant decrease in the amplitude of Ca²âº current in Wistar rat neurons. Furthermore, LEV (100 nM-1 mM) reduced the Ca²âº current in a concentration-dependent manner in both SER and Wistar rat neurons, but the inhibition was much more potent in the former neurons than in the latter. Under the condition that the Ca²âº current had already been inhibited by LEV (10 µM), the addition of nifedipine (10 µM) did not cause further inhibition. Conversely, LEV had no effects on the current that had already been decreased by nifedipine (10 µM) given before LEV treatment (10 µM), indicating that LEV could act on the L-type Ca²âº channel. LEV elevated the threshold potential level for activation of the Ca²âº current and reduced the L-type Ca²âº current in type 1 neurons of SER, and the inhibitory action in type 2 neurons was much more potent than that in Wistar rat neurons, suggesting that these effects contribute, at least partly, to the antiepileptic action of LEV.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/patologia , Hipocampo/patologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piracetam/análogos & derivados , Animais , Biofísica , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Epilepsia/genética , Feminino , Técnicas In Vitro , Levetiracetam , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Inibição Neural/genética , Neurônios/classificação , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Piracetam/farmacologia , Ratos , Ratos Mutantes , Ratos Wistar
17.
Structure ; 20(7): 1167-76, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22705208

RESUMO

Voltage-gated Na⁺ (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na⁺ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca²âº-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Fatores de Crescimento de Fibroblastos/química , Canais de Sódio/química , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Calorimetria , Cristalografia por Raios X , Escherichia coli , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Plasmídeos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Canais de Sódio/genética , Canais de Sódio/metabolismo , Relação Estrutura-Atividade
18.
Cell Rep ; 1(1): 43-55, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22347718

RESUMO

Specialized somatosensory neurons detect temperatures ranging from pleasantly cool or warm to burning hot and painful (nociceptive). The precise temperature ranges sensed by thermally sensitive neurons is determined by tissue-specific expression of ion channels of the transient receptor potential(TRP) family.We show here that in Drosophila, TRPA1 is required for the sensing of nociceptive heat. We identify two previously unidentified protein isoforms of dTRPA1, named dTRPA1-C and dTRPA1-D, that explain this requirement. A dTRPA1-C/D reporter was exclusively expressed in nociceptors, and dTRPA1-C rescued thermal nociception phenotypes when restored to mutant nociceptors. However,surprisingly, we find that dTRPA1-C is not a direct heat sensor. Alternative splicing generates at least four isoforms of dTRPA1. Our analysis of these isoforms reveals a 37-amino-acid-long intracellular region (encoded by a single exon) that is critical for dTRPA1 temperature responses. The identification of these amino acids opens the door to a biophysical understanding of a molecular thermosensor.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Temperatura Alta , Canais de Cátion TRPC/química , Canais de Cátion TRPC/metabolismo , Sensação Térmica , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Técnicas de Silenciamento de Genes , Testes Genéticos , Ativação do Canal Iônico , Canais Iônicos , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Nociceptividade , Nociceptores/metabolismo , Técnicas de Patch-Clamp , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Relação Estrutura-Atividade , Canal de Cátion TRPA1
19.
Brain Res ; 1342: 127-37, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20420813

RESUMO

Although the endogenous cannabinoid system modulates a variety of physiological and pharmacological processes, the specific role of cannabinoid CB1 receptors in the modulation of glutamatergic neurotransmission and neural plasticity is not well understood. Using whole-cell patch clamp recording techniques, evoked or spontaneous excitatory postsynaptic currents (eEPSCs or sEPSCs) were recorded from visualized, layer II/III pyramidal cells in frontal cortical slices from rat brain. Bath application of the CB1 receptor agonist, WIN 55212-2 (WIN), reduced the amplitude of NMDA receptor-mediated EPSCs in a concentration-dependent manner. When co-applied with the specific CB1 antagonists, AM251 or AM281, WIN did not suppress NMDA receptor-mediated EPSCs. WIN also reduced the amplitude of evoked AMPA receptor-mediated EPSCs, an effect that was also reversed by AM251. Both the frequency and amplitude of spontaneous AMPA receptor-mediated EPSCs were significantly reduced by WIN. In contrast, WIN reduced the frequency, but not the amplitude of miniature EPSCs, suggesting that the suppression of glutamatergic activity by CB1 receptors in the frontal neocortex is mediated by a presynaptic mechanism. Taken together, these data indicate a critical role for endocannabinoid signaling in the regulation of excitatory synaptic transmission in frontal neocortex, and suggest a possible neuronal mechanism whereby THC regulates cortical function.


Assuntos
Lobo Frontal/metabolismo , Células Piramidais/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Lobo Frontal/citologia , Lobo Frontal/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
20.
J Neurophysiol ; 101(1): 67-83, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18971298

RESUMO

Ethanol (EtOH) has powerful effects on GABA(A) receptor-mediated neurotransmission, and we have previously shown that EtOH-induced enhancement of GABA(A) receptor-mediated synaptic transmission in the hippocampus is developmentally regulated. Because synaptic inhibition is determined in part by the firing properties of interneurons, we have investigated the mechanisms whereby EtOH influences the spontaneous firing characteristics and hyperpolarization-activated cation current (Ih) of hippocampal interneurons located in the near to the border of stratum lacunosum moleculare and s. radiatum of adolescent and adult rats. EtOH did not affect current injection-induced action potentials of interneurons that do not exhibit spontaneous firing. However, in neurons that fire spontaneously, EtOH enhanced the frequency of spontaneous action potentials (sAPs) in a concentration-dependent manner, an effect that was more pronounced in interneurons from adolescent rats, compared with adult rats. EtOH also modulated the afterhyperpolarization (AHP) that follows sAPs by shortening the tau(slow) decay time constant, and this effect was more pronounced in slices from adolescent rats. EtOH increased Ih amplitudes, accelerated Ih activation kinetics, and increased the maximal Ih conductance in interneurons from animals in both age groups. These effects were also more pronounced in interneurons from adolescents and persisted in the presence of glutamatergic and GABAergic blockers. However, EtOH failed to affect sAP firing in the presence of ZD7288 or cesium chloride. These results suggest that Ih may be of mechanistic significance in the effect of EtOH on interneuron spontaneous firing.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Interneurônios/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Césio/farmacologia , Cloretos/farmacologia , Interpretação Estatística de Dados , Eletrofisiologia , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA