Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(2): 176, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240882

RESUMO

The arid regions of northwest China suffer from water shortages, low land quality, and a fragile ecological environment, while social and economic development has increased the ecological and environmental load. The spatiotemporal pattern and evolutionary trend of ecological environmental quality were investigated by constructing a remote sensing-based ecological environmental index (EQI) evaluation model incorporating four indicators: drought index (DI), soil erosion index (SEI), greenness index (GI), and carbon exchange index (CEI). The study found that between 2001 and 2020, the DI, the SEI, and the CEI in the northwest arid region exhibited a downward trend with reduction rates of - 3e-05, -0.0006, and -0.0018, respectively. However, the GI demonstrated an upward trend, with a growth rate of 0.002. The average EQI in 2020 was 0.315, indicating a fair grade, with only 11.56% falling above the medium level. A general increasing trend was observed throughout the study period in EQI, with an incremental rate of 0.0002. Areas with future improvements in EQI accounted for 57.547% and were principally located in the eastern part of Inner Mongolia, Qinghai, and the northern and southern portions of Xinjiang. Notably, land use was significantly correlated with EQI (p < 0.01), with a hierarchy of effects that ran: forest land (0.678) > cultivated land (0.422) > grassland (0.382) > wasteland (0.138). The highly robust findings presented here offer innovative methods for ecological and environmental monitoring in the arid region of the northwest, with potential implications at an international scale.


Assuntos
Monitoramento Ambiental , Florestas , Clima Desértico , China , Tecnologia de Sensoriamento Remoto , Carbono , Ecossistema , Conservação dos Recursos Naturais
2.
J Environ Manage ; 331: 117305, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681030

RESUMO

Making improvements to the water-holding characteristics and water-erosion resistance of desert soils, particularly in inland extremely arid areas, is vital for achieving both sustainable water resource utilisation and food security. The aim of this study is to evaluate the effects of the co-application of biochar and carboxymethyl cellulose sodium (CMC) on the physical properties of sandy desert soil, including infiltration rate, saturated water conductivity, field water-holding capacity and aggregate stability. Sandy desert soil samples were collected from jujube plantations on the southern edge of the Taklimakan Desert in the Hotan Prefecture, Xinjiang, China. Five CMC application ratios (C0:0, C1:0.01 g/kg, C2:0.02 g/kg, C3:0.04 g/kg and C4:0.08 g/kg) and five biochar application ratios (B0:0, B1:1.0 g/kg, B2:2.0 g/kg, B3:4.0 g/kg and B4:8.0 g/kg) were designed and a total of 11 experimental treatments were performed, which were labelled as CK (control group), B2C0, B2C1, B2C2, B2C3, B2C4, B4C4, B0C2, B1C2, B3C2 and B4C2. Compared with CK, the combined application of biochar and CMC reduced the soil bulk density (BD) by 1.29-9.41% and the saturated hydraulic conductivity (Ks) by 29.64-94.98%, and increased the soil saturated water content (SSWC) by 8.81-30.74% and the water holding capacity (WHC) by 13.91-36.87%. Similarly, the water-stable aggregates that were co-applied with biochar and CMC increased by 29.10-256.86%. This resulted in significant improvement in the stability of sandy desert soil against water erosion. The principal component analysis (PCA) results found B4C4 to have the best comprehensive improvement effect. Therefore, 0.08 g/kg of CMC and 8.0 g/kg of biochar were used as recommended for improving the hydraulic properties of desert soils. Generally, CMC and biochar have a mutually complementary effect on improving sandy desert soil, providing new ideas and approaches for the improvement of soil and the sustainable development of agriculture in desert areas.


Assuntos
Carboximetilcelulose Sódica , Solo , Carvão Vegetal , Água , Sódio
3.
Plants (Basel) ; 13(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065457

RESUMO

In the southern Xinjiang region of China, developing efficient irrigation and fertilization strategies to enhance resource utilization and prevent desertification is of critical importance. This study focuses on jujubes in Xinjiang, China, and involves a three-year field experiment aimed at exploring the optimal application strategy of magnetically treated water combined with microbial organic fertilizer to provide scientific support for high-quality jujube production. The experiment included a control group (using only fresh water, denoted as CK) and combinations of magnetically treated water drip irrigation with varying amounts of microbial organic fertilizer: in 2021, treatments included M0 (only irrigating with magnetically treated water), M6 (0.6 t/ha), M12 (1.2 t/ha), M18 (1.8 t/ha), and M24 (2.4 t/ha); in 2022 and 2023, treatments included M0, M6 (0.6 t/ha), M12 (1.2 t/ha), M24 (2.4 t/ha), and M48 (4.8 t/ha). This study investigated the effects of magnetically treated water drip irrigation combined with microbial organic fertilizer on soil physical properties, hydraulic parameters, enzyme activity, aggregate stability, and jujube yield and quality. The application of microbial organic fertilizer significantly reduced the soil bulk density by 3.07% to 11.04% and increased soil porosity by 1.97% to 14.75%. Soil saturated hydraulic conductivity gradually decreased with the increasing amount of microbial organic fertilizer, with a reduction range of 5.95% to 13.69%, while the water-holding capacity significantly improved (from 0.217 cm3/cm3 to 0.264 cm3/cm3). Additionally, microbial organic fertilizer significantly enhanced the activities of urease, catalase, and sucrase in the soil and significantly increased the proportion of large soil aggregates. Jujube yield increased by 3.66% to 21.38%, and the quality significantly improved, as evidenced by the increase in soluble sugar and flavonoid content. The Gauss model calculation results recommended 3.09 t·hm2 as the optimal amount of microbial organic fertilizer for comprehensively improving jujube yield and quality. These findings indicate that magnetically treated water drip irrigation combined with high amounts of microbial organic fertilizer significantly improved soil physical properties, hydraulic parameters, enzyme activity, aggregate stability, and jujube yield and quality, providing scientific evidence for desert soil improvement and agricultural production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA