Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(7): E748-57, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550319

RESUMO

Oncogenic mutations in the BRAF kinase occur in 6-8% of nonsmall cell lung cancers (NSCLCs), accounting for more than 90,000 deaths annually worldwide. The biological and clinical relevance of these BRAF mutations in NSCLC is incompletely understood. Here we demonstrate that human NSCLC cells with BRAF(V600E), but not other BRAF mutations, initially are sensitive to BRAF-inhibitor treatment. However, these BRAF(V600E) NSCLC cells rapidly acquire resistance to BRAF inhibition through at least one of two discrete molecular mechanisms: (i) loss of full-length BRAF(V600E) coupled with expression of an aberrant form of BRAF(V600E) that retains RAF pathway dependence or (ii) constitutive autocrine EGF receptor (EGFR) signaling driven by c-Jun-mediated EGFR ligand expression. BRAF(V600E) cells with EGFR-driven resistance are characterized by hyperphosphorylated protein kinase AKT, a biomarker we validated in BRAF inhibitor-resistant NSCLC clinical specimens. These data reveal the multifaceted molecular mechanisms by which NSCLCs establish and regulate BRAF oncogene dependence, provide insights into BRAF-EGFR signaling crosstalk, and uncover mechanism-based strategies to optimize clinical responses to BRAF oncogene inhibition.


Assuntos
Comunicação Autócrina/fisiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Comunicação Autócrina/genética , Sequência de Bases , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Análise de Sequência de RNA
2.
Genome Res ; 22(7): 1316-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22434427

RESUMO

Zinc-finger nucleases (ZFNs) drive highly efficient genome editing by generating a site-specific DNA double-strand break (DSB) at a predetermined site in the genome. Subsequent repair of this break via the nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways results in targeted gene disruption or gene addition, respectively. Here, we report that ZFNs can be engineered to induce a site-specific DNA single-strand break (SSB) or nick. Using the CCR5-specific ZFNs as a model system, we show that introduction of a nick at this target site stimulates gene addition using a homologous donor template but fails to induce significant levels of the small insertions and deletions (indels) characteristic of repair via NHEJ. Gene addition by these CCR5-targeted zinc finger nickases (ZFNickases) occurs in both transformed and primary human cells at efficiencies of up to ∼1%-8%. Interestingly, ZFNickases targeting the AAVS1 "safe harbor" locus revealed similar in vitro nicking activity, a marked reduction of indels characteristic of NHEJ, but stimulated far lower levels of gene addition-suggesting that other, yet to be identified mediators of nick-induced gene targeting exist. Introduction of site-specific nicks at distinct endogenous loci provide an important tool for the study of DNA repair. Moreover, the potential for a SSB to direct repair pathway choice (i.e., HDR but not NHEJ) may prove advantageous for certain therapeutic applications such as the targeted correction of human disease-causing mutations.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcação de Genes/métodos , Genoma Humano , Proteínas Recombinantes de Fusão/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Domínio Catalítico , Linhagem Celular Transformada , Linhagem Celular Tumoral , Clonagem Molecular , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA por Junção de Extremidades , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Histonas/metabolismo , Humanos , Mutação INDEL , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Receptores CCR5/genética , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transformação Genética
3.
Cell Rep ; 11(1): 98-110, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25843712

RESUMO

Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR mutant lung adenocarcinoma, we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses.


Assuntos
Adenocarcinoma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , NF-kappa B/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloexanonas/administração & dosagem , Compostos de Epóxi/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , NF-kappa B/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo
4.
Cancer Cell ; 27(4): 533-46, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25873175

RESUMO

Phosphoinositide-3-kinase (PI3K)-α inhibitors have shown clinical activity in squamous cell carcinomas (SCCs) of head and neck (H&N) bearing PIK3CA mutations or amplification. Studying models of therapeutic resistance, we have observed that SCC cells that become refractory to PI3Kα inhibition maintain PI3K-independent activation of the mammalian target of rapamycin (mTOR). This persistent mTOR activation is mediated by the tyrosine kinase receptor AXL. AXL is overexpressed in resistant tumors from both laboratory models and patients treated with the PI3Kα inhibitor BYL719. AXL dimerizes with and phosphorylates epidermal growth factor receptor (EGFR), resulting in activation of phospholipase Cγ (PLCγ)-protein kinase C (PKC), which, in turn, activates mTOR. Combined treatment with PI3Kα and either EGFR, AXL, or PKC inhibitors reverts this resistance.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Tumoral , Cetuximab , Classe I de Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos , Carcinoma de Células Escamosas do Esôfago , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
5.
Nat Genet ; 47(3): 250-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25665005

RESUMO

Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Fosfoproteínas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Silenciamento de Genes , Genes ras , Células HEK293 , Células HT29 , Xenoenxertos , Via de Sinalização Hippo , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Mutação , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA