Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(15): 7071-7079, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561240

RESUMO

Spatial confinement of organic pollutants and reactive oxygen species (e.g., SO4•- and •OH) with ultrashort lifetime inside the scale of chemical theoretical diffusion could provide a greatly promising strategy to overcome the limitation of mass transfer in the heterogeneous Fenton-like oxidation process. Herein, we first reported spatial confinement of cobalt nanoparticles in N-doped carbon nanorods (Co-NCNRs), by encapsulating Co nanoparticles into N-doped carbon nanorods, in activating CaSO3 for antibiotic degradation. Compared to Na2SO3 and NaHSO3, CaSO3 could slowly and persistently discharge SO32- due to its low solubility, thus avoiding the depletion of the generated SO3•- and •OH under the high concentration of sulfite ions. Fully physical characterizations confirmed that the 3D hydrogel was mostly transformed into the nanorod structure of Co-NCNRs at 550 °C. Co atoms were successfully nanoconfined into N-doped carbon nanorods, which contributes to mass transfer and prevents the agglomeration of Co nanoparticles, thus enhancing its catalytic activity and stability in activating CaSO3 for water decontamination. The catalytic performance, kinetic research, influences of inorganic anions, pH, and degradation mechanism of chlortetracycline degradation catalyzed by the Co-NCNRs/CaSO3 system have been studied in detail. This work not only proposed a facile method for synthesis of nanoconfined catalyst but also provided an excellent Co-NCNRs/CaSO3 system for wastewater treatment.

2.
Adv Sci (Weinh) ; 11(12): e2306893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225898

RESUMO

H2 generation from methanol-water mixtures often requires high pressure and high temperature (200-300 °C). However, CO can be easily generated and poison the catalytic system under such high temperature. Therefore, it is highly desirable to develop the efficient catalytic systems for H2 production from methanol at room temperature, even at sub-zero temperatures. Herein, carbon nanotube-supported Pt nanocomposites are designed and synthesized as high-performance nano-catalysts, via stabilization of Pt nanoparticles onto carbon nanotube (CNT), for H2 production upon methanol dehydrogenation at sub-zero temperatures. Therein, the optimal Pt/CNT nanocomposite presents the superior catalytic performance in H2 production upon methanol dehydrogenation at the expense of B2(OH)4, with the TOF of 299.51 min-130 oC. Compared with other common carriers, Pt/CNT exhibited the highest catalytic performance in H2 production, emphasizing the critical role of CNT in methanol dehydrogenation. The confinement of Pt nanoparticles by CNTs is conducive to inhibiting the aggregation of Pt nanoparticles, thereby significantly increasing its catalytic performance and stability. The kinetic study, detailed mechanistic insights, and density functional theory (DFT) calculation confirm that the breaking of O─H bond of CH3OH is the rate-controlling step for methanol dehydrogenation, and both H atoms of H2 are supplied by methanol. Interestingly, H2 is also successfully produced from methanol dehydrogenation at -10 °C, which absolutely solves the freezing problem in the H2 evolution upon water-splitting reaction.

3.
Water Res ; 253: 121263, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341977

RESUMO

Ultralow-pressurized ultrafiltration membrane process with low energy consumption is promising in surface water purification. However, membrane fouling and low selectivity are significant barriers for the wide application of this process. Herein, an ultrathin zwitterionic hydrogel nanolayer was in-situ grown on polysulfone ultrafiltration membrane surface through interfacially-initiated free radical polymerization. The hydrogel-modified membrane possessed improved biological fouling resistance during the dynamic filtration process (bovine serum albumin, Escherichia coli and Staphylococcus aureus), comparing with commercial polysulfone membrane. The enhanced biofouling resistance ability of zwitterionic hydrogel nanolayer was derived from the foulant repulsion of hydration shell and the bactericidal effect of quaternary ammonium, according to the results of foulant-membrane interaction energy analyses and antibacterial performances. In surface water treatment, the zwitterionic hydrogel layer inhibited biofouling and resulted in the formation of a loose and thin biofilm. In addition, the hydrogel-modified membrane possessed 22% improvement in dissolved organic carbon (DOC) removal and 134% increasement in stable water flux, compared to commercial polysulfone membrane. The in-situ grown zwitterionic hydrogel nanolayer on membrane surface offers a prospectively alternative for biofouling control in ultralow-pressurized membrane process.


Assuntos
Incrustação Biológica , Polímeros , Sulfonas , Purificação da Água , Incrustação Biológica/prevenção & controle , Ultrafiltração/métodos , Hidrogéis , Membranas Artificiais , Purificação da Água/métodos
4.
Chem Sci ; 15(1): 204-212, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131073

RESUMO

Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.

5.
Front Cell Infect Microbiol ; 13: 1278600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298919

RESUMO

Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.


Assuntos
Candidíase Invasiva , Candidíase , Microbiota , Humanos , Animais , Camundongos , Candida albicans , Trato Gastrointestinal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA