Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(21): 10902-10907, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-30896683

RESUMO

Segregation-exsolution of B-site catalytic dopants as nanoparticles from A-site-deficient perovskite (A1-xBO3-δ) surfaces has been actively used in recent years to promote the activity and durability of perovskite oxides towards efficient fuel oxidation and water splitting. The mechanistic understandings are currently gained from equilibrium thermodynamics, such as atomic scale density functional theory calculations, in terms of segregation energy, interaction energy and elastic energy. Herein, we have developed a micro-scale phase-field model framework that describes the kinetics and microstructure evolutions of the B-site segregation and nanoparticle exsolution from the A1-xBO3-δ surface. The model was derived in a thermodynamically consistent manner by employing a ternary regular-solution free-energy functional and Cahn-Hilliard kinetic equations. The key hypothesis is that the B-site nanoparticle is exsolved by a spinodal decomposition once the surface region of A1-xBO3-δ is driven to the spinodal region of the free-energy functional via B-site segregation to the surface and/or via expansion of the chemical spinodal region. The effects of oxygen partial pressure (or electric polarization), B-site supersaturation (or A-site deficiency), and segregation energy have been explicitly investigated, and the results obtained agree qualitatively with the experimental observations. The proposed model can serve as a multi-scale bridge that ties the atomic-scale understandings to the micro-scale observations and has the potential to be used for the design and optimization of nano-architectures of A1-xBO3-δ materials.

2.
Phys Chem Chem Phys ; 19(23): 15471-15483, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28580976

RESUMO

Niobium based Nb4AlC3, Nb4SiC3, Nb4GeC3 and Nb4GaC3 were investigated by means of density functional theory. Together with the known Nb4AlC3, the role of group III, IV elements in various properties of Nb4AC3 (A = Al, Si, Ga, Ge) was systematically investigated, and particularly the bulk moduli, shear moduli, and Young's moduli helped us to approach the ductility. All the studied compounds were found to be mechanically stable, and they also exhibit the metallic nature that results from the Nb-4d states being dominant at the Fermi level. The typical 4d-2p hybridization leads to strong Nb-C covalent bonding and a relatively weaker 4d-3p (4p) hybridization between Nb and A is identified. The latter does perturb the performance of materials. By varying A elements in Nb4AC3, the position and the width of the p states as well as hybridizations are altered, which determine the covalency and the ionicity of the chemical bonds. A high density of states at the Fermi level and the nesting effects in the Fermi surface are identified in Nb4SiC3 and linked to its unusual anisotropic behavior. Furthermore, Nb4GeC3 is predicted to be a very promising candidate solar heating barrier material. Overall, the present work gives insights into the role of A elements in the electronic structure and the physical properties of Nb4AC3 compounds. The tendencies and rules established here will help in the designing of functional ceramic materials with desirable properties.

3.
ACS Appl Mater Interfaces ; 14(42): 48262-48275, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36254838

RESUMO

Three different types of surface-modified layers of N, C, and N+C are successfully prepared on AerMet100 steel by plasma-assisted thermochemical treatment, and diamond-like carbon (DLC) films are formed on the top surfaces of the latter two. The results show that the DLC films produced by prenitriding and then carburizing (N+C) exhibit a smoother and finer morphology and higher sp3 content than that without prenitriding (C). In addition, the wear resistance of the N+C specimen with a high hardness nitrided layer as the support for the outermost DLC films is superior to that of the C specimen. In view of the catalytic effect of the Fe3C phase on the growth of DLC films, the interfacial properties of Fe3C(001)/diamond(111) are investigated using first-principles calculations. On the basis of the most preferred Fe-terminated HCP site model, the effects of alloyed cementite (Fe2MC) on interfacial adhesion of Fe2MC(001)/diamond(111) are also investigated. Furthermore, the mechanisms of interfacial adhesion for two representative dopings (Zr weakened and V enhanced) are revealed in detail. These results are expected to provide a potential promising means for future experimental works on the preparation of high-performance DLC films on alloy steel surfaces by plasma carburizing.

4.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363168

RESUMO

The Nb4AlC3 MAX phase can be regarded as a TMC structure with stacking faults, which has great potential as a novel solid hydrogen storage material. Herein, we used ab initio calculations for understanding the hydrogen incorporation into Nb4AlC3 MAX phases, including equilibrium structural characteristics, energy changes, electronic structures, bonding characteristics, and diffusion paths. According to the calculated results, H has thermal stability in the interstice of the Nb-Al layer, and the most probable insertion site is an octahedron (3-site) composed of three Nb atoms and three Al atoms. When C vacancies are introduced, the Nb-C layer has a specific storage capacity for H. In addition, Al vacancies can also be used as possible sites for H incorporation. Moreover, the introduction of vacancies significantly increase the hydrogen storage capacity of the MAX phase. According to the electronic structure and bonding characteristics, the excellent hydrogen storage ability of the Nb4AlC3 structure may be due to the formation of ionic bonds between H and Nb/Al. It is worth noting that the H-Al bond in the 1-site is a covalent bond and an ionic bond key mixture. The linear synchronous transit optimization study shows that only H diffusion in Al vacancies is not feasible. In conclusion, the Nb-Al layer in Nb4AlC3 can provide favorable conditions for the continuous insertion and subsequent extraction of H, while the vacancy structure is more suitable for H storage. Our work provides solid theoretical results for understanding the hydrogen incorporation into Nb4AlC3 MAX phases that can be helpful for the design of advanced hydrogen storage materials.

5.
Materials (Basel) ; 15(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009446

RESUMO

In this study, we reported a laminated CNTs/Mg composite fabricated by spray-deposition and subsequent hot-press sintering, which realized simultaneous enhancement effects on strength and electromagnetic interference (EMI) shielding effectiveness (SE) by the introduced CNTs and CNT induced laminated 'Mg-CNT-Mg' structure. It was found that the CNTs/Mg composite with 0.5 wt.% CNTs not only exhibited excellent strength-toughness combination but also achieved a high EMI SE of 58 dB. The CNTs increased the strength of the composites mainly by the thermal expansion mismatch strengthening and blocking dislocation movements. As for toughness enhancement, CNTs induced laminated structure redistributes the local strain effectively and alleviates the strain localization during the deformation process. Moreover, it could also hinder the crack propagation and cause crack deflection, which resulted in an increment of the required energy for the failure of CNTs/Mg composites. Surprisingly, because of the laminated structure induced by introducing CNTs, the composite also exhibited an outperforming EMI SE in the X band (8.2-12.4 GHz). The strong interactions between the laminated 'Mg-CNT-Mg' structure and the incident electromagnetic waves are responsible for the increased absorption of the electromagnetic radiation. The lightweight CNTs/Mg composite with outstanding mechanical properties and simultaneously increased EMI performance could be employed as shell materials for electronic packaging components or electromagnetic absorbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA