Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nephrology (Carlton) ; 29(9): 555-564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011853

RESUMO

AIM: Rhodojaponin VI (R-VI) is the key compound of Rhododendron molle G. Don (Ericaceae) (RM) with effective clinical application in rheumatoid arthritis and chronic glomerulonephritis. In our study, we tried to explore the effect of R-VI on the rat model of membranous nephropathy. METHODS: The rat model of passive heymann nephritis (PHN) was established by injecting sheep anti-rat Fx1A serum at a single dose through the tail. The rats were orally administered R-VI (0.02 mg/kg) or FK506 (1 mg/kg) 1 day before PHN induction, which was kept for 4 weeks. Urine and blood samples as well as kidney tissue were collected for analysis. C5b-9-induced human podocyte cell (HPC) was employed for experiments in vitro. RESULTS: R-VI could alleviate glomerulonephritis progression and podocyte injury in PHN rats, as indicated by the decreased proteinuria and the elevated level of albumin, accompanied with reduced immune deposits, reversed podocyte injury in the kidneys. Furthermore, R-VI suppressed murine double minute 2 (MDM2) expression without the alteration in the protein level of p53 and decreased Notch1 expression independent of Numb regulation. Pre-treatment with R-VI in C5b-9-induced HPC blocked MDM2/Notch1 signalling pathway. CONCLUSION: Thus, R-VI ameliorates podocyte injury in rats with PHN, which was probably related with MDM2/Notch1 signalling pathway.


Assuntos
Modelos Animais de Doenças , Glomerulonefrite Membranosa , Podócitos , Proteínas Proto-Oncogênicas c-mdm2 , Receptor Notch1 , Saponinas , Transdução de Sinais , Animais , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/metabolismo , Receptor Notch1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Saponinas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
2.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273465

RESUMO

The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.


Assuntos
Fístula Arteriovenosa , Diálise Renal , Humanos , Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/terapia , Fístula Arteriovenosa/patologia , Remodelação Vascular , Falência Renal Crônica/terapia , Falência Renal Crônica/patologia , Falência Renal Crônica/metabolismo , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Animais , Hemodinâmica , Transdução de Sinais , Terapia de Alvo Molecular
3.
Transl Res ; 271: 13-25, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38679230

RESUMO

Chronic kidney disease (CKD) is a serious health problem worldwide, which ultimately leads to end-stage renal disease (ESRD). Renal fibrosis is the common pathway and major pathological manifestation for various CKD proceeding to ESRD. However, the underlying mechanisms and effective therapies are still ambiguous. Early growth response 2 (EGR2) is reportedly involved in organ formation and cell differentiation. To determine the role of EGR2 in renal fibrosis, we respectively confirmed the increased expression of EGR2 in kidney specimens from both CKD patients and mice with location in proximal tubules. Genetic deletion of EGR2 attenuated obstructive nephropathy while EGR2 overexpression further promoted renal fibrosis in mice subjected to unilateral ureteral obstruction (UUO) due to extracellular matrix (ECM) deposition mediating by partial epithelial-mesenchymal transition (EMT) as well as imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs (TIMPs). We found that EGR2 played a critical role in Smad3 phosphorylation, and inhibition of EGR2 reduced partial EMT leading to blockade of ECM accumulation in cultured human kidney 2 cells (HK2) treated with transforming growth factor ß1 (TGF-ß1). In addition, the transcription co-stimulator signal transducer and activator of transcription 3 (STAT3) phosphorylation was confirmed to regulate the transcription level of EGR2 in TGF-ß1-induced HK2 cells. In conclusion, this study demonstrated that EGR2 played a pathogenic role in renal fibrosis by a p-STAT3-EGR2-p-Smad3 axis. Thus, targeting EGR2 could be a promising strategy for CKD treatment.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose , Proteína Smad3 , Animais , Humanos , Masculino , Camundongos , Linhagem Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA