Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(45)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37536300

RESUMO

Isoprene is a typical physiological marker that can be used to screen for chronic liver disease. This work developed a portable micro-integrated chromatography analysis system based on micro-electromechanical system technology, nanomaterials technology and embedded microcontroller technology. The system integrated components such as graphene oxide quantum dots modified semi-packed microcolumn, In2O3nanoflower (NF) gas-sensitive detector and 3D printed miniature solenoid valve group. The effectiveness of the separation effect of the micro-integrated system was verified by gas mixture test; the laws of the influence of carrier gas pressure and column temperature on the chromatographic separation performance, respectively, were investigated, and the working conditions (column temperature 90 °C and carrier gas pressure 7.5 kPa) for system testing were determined. The percentages of relative standard deviation of the peak areas and retention times obtained for the separated gases were in the range of 0.95%-6.06%, indicating the good reproducibility of the system. Meanwhile, the microintegrated system could detect isoprene down to 50 ppb at small injection volume (1 ml). The system response increased with increasing isoprene concentration and was linearly correlated with isoprene concentration (R2= 0.986), indicating that the system was expected to be used for trace detection of isoprene, a marker gas for liver disease, in the future.

2.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763868

RESUMO

High in reliability, multi in function, and strong in tracking and detecting, active phased array antennas have been widely applied in radar systems. Heat dissipation is a major technological barrier preventing the realization of next-generation high-performance phased array antennas. As a result of the advancement of miniaturization and the integration of microelectronics technology, the study and development of embedded direct cooling or heat dissipation has significantly enhanced the heat dissipation effect. In this paper, a novel swept-back fishnet-embedded microchannel topology (SBFEMCT) is designed, and various microchannel models with different fishnet runner mesh density ratios and different fishnet runner layers are established to characterize the chip Tmax, runner Pmax, and Vmax and analyze the thermal effect of SBFEMCT under these two operating conditions. The Pmax is reduced to 72.37% and 57.12% of the original at mesh density ratios of 0.5, 0.25, and 0.125, respectively. The maximum temperature reduction figures are average with little change in maximum velocity and a small increase in maximum pressure drop across the number of fishnet runner layers from 0 to 4. This paper provides a study of the latest embedded thermal dissipation from the dimension of a single chip to provide a certain degree of new ideas and references for solving the thermal technology bottleneck of next-generation high-performance phased array antennas.

3.
Micromachines (Basel) ; 13(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744522

RESUMO

Surface mount technology (SMT) plays an important role in integrated circuits, but due to thermal stress alternation caused by temperature cycling, it tends to have thermo-mechanical reliability problems. At the same time, considering the environmental and health problems of lead (Pb)-based solders, the electronics industry has turned to lead-free solders, such as ternary alloy Sn-3Ag-0.5Cu (SAC305). As lead-free solders exhibit visco-plastic mechanical properties significantly affected by temperature, their thermo-mechanical reliability has received considerable attention. In this study, the interface delamination of an SMT solder joint using a SAC305 alloy under temperature cycling has been analyzed by the nonlinear finite element method. The results indicate that the highest contact pressure at the four corners of the termination/solder horizontal interface means that delamination is most likely to occur, followed by the y-direction side region of the solder/land interface and the top arc region of the termination/solder vertical interface. It should be noted that in order to keep the shape of the solder joint in the finite element model consistent with the actual situation after the reflow process, a minimum energy-based morphology evolution method has been incorporated into the established finite element model. Eventually, an Improved Efficient Global Optimization (IEGO) method was used to optimize the geometry of the SMT solder joint in order to reduce the contact pressure at critical points and critical regions. The optimization result shows that the contact pressure at the critical points and at the critical regions decreases significantly, which also means that the probability of thermal-induced delamination decreases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA