Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Environ Sci Technol ; 57(30): 11231-11240, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467161

RESUMO

Current methods for evaluating catalytic degradation reactions of environmental pollutants primarily rely on chromatography that often suffers from intermittent analysis, a long turnaround period, and complex sample pretreatment. Herein, we propose a quantitative time-resolved visualization method to evaluate the progress of catalytic degradation reactions by integrating sample pretreatment [single-drop microextraction, (SDME)], fluorescence sensing, and a smartphone detection platform. The dechlorination reaction of chlorobenzene derivatives was first investigated to validate the feasibility of this approach, in which SDME plays a critical role in direct sample pretreatment, and inorganic CsPbBr3 perovskite encapsulated in a metal-organic framework (MOF-5) was utilized as the fluorescent chromogenic agent (FLCA) in SDME to realize fast in situ colorimetric detection via the color switching from green (CsPbBr3) to blue (chlorine lead bromide, inorganic CsPbCl3 perovskite). The smartphone, which can calculate the B/G value of FLCA, serves as a data output window for quantitative time-resolved visualization. Further, a [Eu(PMA)]n (PMA= pyromellitic acid) fluorescent probe was constructed to use as an FLCA for the in situ evaluation of cinnamaldehyde and p-nitrophenol catalytic reduction. This approach not only minimizes the utilization of organic solvents and achieves quantitively efficient time-resolved visualization but also provides a feasible method for in situ monitoring of the progress of catalytic degradation reactions.


Assuntos
Poluentes Ambientais , Fluorescência , Óxidos , Solventes
2.
Small ; 18(21): e2200388, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35491241

RESUMO

Efficient detection of aqueous copper ions is of high significance for environmental and human health, since copper is involved in potent redox activity in physiological and pathological processes. Covalent organic frameworks (COFs) have shown advantages in efficient capturing and detecting of copper ions due to their large surface area, robust chemical stability, and high sensitivity, but most of them are hydrophobic, leading to the limitation in sensing copper ions in aqueous media. Herein, the design and synthesis of an sp2 -carbon conjugated COF (sp2 -TPE-COF) are reported with surfactant-assisted water dispersion for detecting traces of copper ions based on the photo-induced electron transfer (PET) mechanism. Importantly, the olefin-linked conjugated backbone of sp2 -TPE-COF works as a signal amplified transducer for metal ion sensing. Notably, it is found that a surfactant-assisted strategy can greatly enhance COF's dispersion in aqueous solution and finely modulate their sensitivity with a significantly improved KSV to 15.15 × 104 m-1 in SDBS (sodium dodecyl benzene sulfonate) solution, the value of which is larger than that of a majority of COF/MOF based sensors for copper ions. This research demonstrates the promise of surfactant modulated fully π-conjugated COFs for sensing applications.


Assuntos
Corantes Fluorescentes , Estruturas Metalorgânicas , Cobre , Humanos , Estruturas Metalorgânicas/química , Tensoativos , Água
3.
Small ; 18(1): e2104706, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873837

RESUMO

Achieving high sensitivity over a broad pressure range remains a great challenge in designing piezoresistive pressure sensors due to the irreconcilable requirements in structural deformability against extremely high pressures and piezoresistive sensitivity to very low pressures. This work proposes a hybrid aerogel/hydrogel sensor by integrating a nanotube structured polypyrrole aerogel with a polyacrylamide (PAAm) hydrogel. The aerogel is composed of durable twined polypyrrole nanotubes fabricated through a sacrificial templating approach. Its electromechanical performance can be regulated by controlling the thickness of the tube shell. A thicker shell enhances the charge mobility between tube walls and thus expedites current responses, making it highly sensitive in detecting low pressure. Moreover, a nucleotide-doped PAAm hydrogel with a reversible noncovalent interaction network is harnessed as the flexible substrate to assemble the aerogel/hydrogel hybrid sensor and overcome sensing saturation under extreme pressures. This highly stretchable and self-healable hybrid polymer sensor exhibits linear response with high sensitivity (Smin  > 1.1 kPa-1 ), ultrabroad sensing range (0.12-≈400 kPa), and stable sensing performance over 10 000 cycles at the pressure of 150 kPa, making it an ideal sensing device to monitor pressures from human physiological signals to significant stress exerted by vehicles.


Assuntos
Hidrogéis , Nanotubos de Carbono , Humanos , Monitorização Fisiológica , Polímeros , Pirróis
4.
Angew Chem Int Ed Engl ; 61(3): e202114681, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34755421

RESUMO

As an emerging post-lithium battery technology, aluminum ion batteries (AIBs) have the advantages of large Al reserves and high safety, and have great potential to be applied to power grid energy storage. But current graphite cathode materials are limited in charge storage capacity due to the formation of stage-4 graphite-intercalated compounds (GICs) in the fully charged state. Herein, we propose a new type of cathode materials for AIBs, namely polycyclic aromatic hydrocarbons (PAHs), which resemble graphite in terms of the large conjugated π bond, but do not form GICs in the charge process. Quantum chemistry calculations show that PAHs can bind AlCl4 - through the interaction between the conjugated π bond in the PAHs and AlCl4 - , forming on-plane interactions. The theoretical specific capacity of PAHs is negatively correlated with the number of benzene rings in the PAHs. Then, under the guidance of theoretical calculations, anthracene, a three-ring PAH, was evaluated as a cathode material for AIBs. Electrochemical measurements show that anthracene has a high specific capacity of 157 mAh g-1 (at 100 mA g-1 ) and still maintains a specific capacity of 130 mAh g-1 after 800 cycles. This work provides a feasible "theory guides practice" research model for the development of energy storage materials, and also provides a new class of promising cathode materials for AIBs.

5.
Chemistry ; 27(34): 8694-8697, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33938064

RESUMO

Soft template designing is the most promising strategy for the synthesis of zeolite nanosheets. MFI nanosheets directed by soft templates (containing long-chain alkyl groups or aromatic groups as hydrophobic component) can be found frequently; however, so far, MFI nanosheets synthesized by soft templates with aromatic heterocycle groups (e. g., s-triazine groups) are rare. Herein, a nanosheet-stacked hierarchical MFI zeolite (NSHM) has been synthesized by using a triply branched s-triazine-based surfactant as a bifunctional organic structure-directing agent. On the basis of a geometrical match relationship, a formation model has been proposed. Synthesized NSHM had abundant mesopores stacked by nanosheets and exhibited a high surface area (430 m2 ⋅ g-1 ). The 1 wt% Pd/NSHM attained a significant increase in yield of cyclohexanol/cyclohexanone mixture (from 66 to 85 %) in the oxidation of cyclohexane compared with Silicalite-1 and SBA-15 as supports.

6.
Anal Chem ; 92(14): 9989-9996, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32551556

RESUMO

In situ monitoring of products generated by important heterogeneous catalytic reactions is of great significance for chemical industry, particularly when the products or intermediates are not sufficiently stable or occur at trace-level concentrations. It is therefore highly desirable to develop an integrated in situ catalysis and extraction method, which can simultaneously catalyze the reaction and enrich products while maintaining compatibility with analytical instrumentation. Herein, we propose an approach by depositing different types of metal nanocrystals, including gold, platinum, and palladium nanoparticles, onto fibrous silica microspheres coated fibers for integrated in situ catalysis and extraction. As a proof-of-concept, several typical chemical reactions, including the reduction of p-nitrophenol, epoxidation of styrene, oxidation of benzyl alcohol, and dechlorination of p-chlorophenol, were investigated to validate the feasibility of this method. Our results show that these coatings not only function as catalysts to accelerate the selected reactions but also serve as adsorbents to extract the reactants, intermediates, and products for direct gas chromatographic analysis, suggesting the viability of this approach for the in situ evaluation of catalytic processes. By this approach, the yield, selectivity, and kinetics of a reaction can be readily assessed. This approach can also be extended to investigate the catalytic performance of the same metal nanocrystals with different morphology, surface facet, structure, or surface functionalization. This approach will find broad generality for assessing the catalytic efficiency and selectivity of new catalysts or new chemical reactions and dynamic processes in these reactions.

7.
Nano Lett ; 19(5): 3011-3018, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30971089

RESUMO

Magnetic/plasmonic hybrid nanoparticles are highly desirable for multimodal bioimaging and biosensing. Although the synthesis of heterodimeric nanoparticles has been reported, the products are usually hydrophobic so that post-treatment procedures are required to transfer them into water which are often difficult to perform and cause damages to the structures. Direct synthesis of hydrophilic hybrid nanostructures has remained a grand challenge albeit its immediate advantage of biocompatibility. Herein we report a general seed-mediated approach to the synthesis of hydrophilic and biocompatible M-Fe3O4 (M = Au, Ag, and Pd) heterodimers, in which the size of metals and Fe3O4 can be independently regulated in a wide range. Benefiting from the aqueous synthesis, this approach can be further extended to design more complex heterodimeric structures such as AgPtalloy-Fe3O4, Aucore@Pdshell-Fe3O4, and Aushell-Fe3O4. The hydrophilic nature of our heterodimers makes them readily useful for biomedical applications without the need of additional ligand exchange processes in contrast to those prepared in nonpolar solvents. These nanoscale magnetic/plasmonic heterostructures were shown to be ideally suited for integrated biomedical diagnoses, such as magnetic resonance imaging, photoacoustic imaging, optical coherence tomography, and computed tomography, in virtue of their biocompatibility and combined tunable magnetic and plasmonic properties.


Assuntos
Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Imagem Multimodal/métodos , Meios de Contraste/química , Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tomografia Computadorizada por Raios X , Água/química
8.
Angew Chem Int Ed Engl ; 59(15): 6284-6288, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31986232

RESUMO

Thin membranes (900 nm) were prepared by direct transformation of infiltrated amorphous precursor nanoparticles, impregnated in a graphene oxide (GO) matrix, into hydroxy sodalite (SOD) nanocrystals. The amorphous precursor particles rich in silanols (Si-OH) enhanced the interactions with the GO, thus leading to the formation of highly adhesive and stable SOD/GO membranes via strong bonding. The cross-linking of SOD nanoparticles with the GO in the membranes promoted both the high gas permeance and enhanced selectivity towards H2 from a mixture containing CO2 and H2 O. The SOD/GO membranes are moisture resistance and exhibit steady separation performance (H2 permeance of about 4900 GPU and H2 /CO2 selectivity of 56, with no degradation in performance during the test of 50 h) at high temperature (200 °C) under water vapor (4 mol %).

9.
Langmuir ; 34(5): 1890-1898, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29307185

RESUMO

A facile synthesis strategy was adopted to prepare resilient graphene aerogel (GA) with properties of high emulsified oil adsorption capacities, excellent rebounding performance, oil-water selectivity, and recycling abilities. The maximum adsorption capacity of GA for emulsified diesel oil was 2.5 × 104 mg g-1. The microscopic kinetic and thermodynamic mutual reaction models of diesel oil emulsion adsorption onto GA were investigated to describe the adsorption mechanism. The emulsified diesel oil was able to be separated efficiently from the oil-water emulsion by GA because of their high oil selectivity. Interestingly, both kinetics and thermodynamic experiments show that emulsified oil adsorption on GA is a physical adsorption and spontaneous process. Besides, GA can be reused with prominent repeatability for at least 10 cycles, demonstrating feasibility in practical applications of GA-based oily water treatment.

10.
Org Biomol Chem ; 12(39): 7800-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25155978

RESUMO

Organomanganese reagents were prepared by the insertion of magnesium into aryl halides in the presence of MnCl2·2LiCl. These organomanganese reagents smoothly undergo 1,2-addition, acylation, and Pd-catalyzed cross-coupling with various electrophiles. Especially, the oxidative homocoupling of organomanganese reagents was completed in one pot without an additional transition-metal catalyst.

11.
J Colloid Interface Sci ; 674: 513-526, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943912

RESUMO

Sphingosine, an amphiphilic molecule, plays a pivotal role as the core structure of sphingolipids, essential constituents of cell membranes. Its unique capability to enhance the permeability of lipid membranes profoundly influences crucial life processes. The molecular structure of sphingosine dictates its mode of entry into lipid bilayers and governs its interactions with lipids, thereby determining membrane permeability. However, the incomplete elucidation of the relationship between the molecular structure of sphingosine and the permeability of lipid membranes persists due to challenges associated with synthesizing sphingosine molecules. A series of sphingosine-derived molecules, featuring diverse hydrophobic chain lengths and distinct headgroup structure, were meticulously designed and successfully synthesized. These molecules were employed to investigate the permeability of large unilamellar vesicles, functioning as model lipid bilayers. With a decrease in the hydrophobic chain length of sphingosine from C15 to C11, the transient leakage ratio of vesicle contents escalated from âˆ¼ 13 % to âˆ¼ 28 %. Although the presence of double bond did not exert a pronounced influence on transient leakage, it significantly affected the continuous leakage ratio. Conversely, modifying the chirality of the C-3 hydroxyl group gives the opposite result. Notably, methylation at the C-3 hydroxyl significantly elevates transient leakage while suppressing the continuous leakage ratio. Additionally, sphingosines that significantly affect vesicle permeability tend to have a more pronounced impact on cell viability. Throughout this leakage process, the charge state of sphingosine-derived molecule aggregates in the solution emerged as a pivotal factor influencing vesicle permeability. Fluorescence lifetime experiments further revealed discernible variations in the effect of sphingosine molecular structure on the mobility of hydrophobic regions within lipid bilayers. These observed distinctions emphasize the impact of molecular structure on intermolecular interactions, extending to the microscopic architecture of membranes, and underscore the significance of subtle alterations in molecular structure and their associated aggregation behaviors in governing membrane permeability.

12.
ACS Sens ; 9(3): 1310-1320, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38390684

RESUMO

The sensitivity of chemiresistive gas sensors based on metal oxide semiconductors (MOSs) has been inherently affected by ambient humidity because their reactive oxygen species are easily hydroxylated by water molecules, which significantly reduces the accuracy of the gas sensors in food quality assessment. Although conventional metal organic frameworks (MOFs) can serve as coatings for MOSs for humidity-independent gas detection, they have to operate at high working temperatures due to their low or nonconductivity, resulting in high power consumption, significant manufacturing inconvenience, and short-term stability due to the oxidation of MOFs. Here, the conductive and thickness-controlled CuHHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene)-coated Cu2O are developed by combining in situ etching and layer-by-layer liquid-phase growth method, which achieves humidity-independent detection of H2S at room temperature. The response to H2S only decreases by 2.6% below 75% relative humidity (RH), showing a 9.6-fold improvement than the bare Cu2O sensor, which is ascribed to the fact that the CuHHTP layer hinders the adsorption of water molecules. Finally, a portable alarm system is developed to monitor food quality by tracking released H2S. Compared with gas chromatography method, their relative error is within 9.4%, indicating a great potential for food quality assessment.


Assuntos
Sulfeto de Hidrogênio , Estruturas Metalorgânicas , Umidade , Qualidade dos Alimentos , Óxidos , Água
13.
Nanoscale ; 16(3): 1080-1101, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165428

RESUMO

Renewable energy electrolysis of water to produce hydrogen is an effective measure to break the energy dilemma. However, achieving activity and stability at a high current density is still a key problem in water electrolyzers. Transition metal phosphides (TMPs), with high activity and relative inexpensiveness, have become excellent candidates for the production of highly pure green hydrogen for industrial applications. In this mini-review, multilevel regulation strategies including nanoscale control, surface composition and interface structure design of high-performance TMPs for hydrogen evolution are systematically summarized. On this basis, in order to achieve large-scale hydrogen production in industry, the hydrogen evolution performance and stability of TMPs at a high current density are also discussed. Peculiarly, the practical application and requirements in proton exchange membrane (PEM) or anion exchange membrane (AEM) electrolyzers can guide the advanced design of regulatory strategies of TMPs for green hydrogen production from renewable energy. Finally, the challenges and prospects in the future development trend of TMPs for efficient and industrial water electrolysis are given.

14.
ACS Appl Mater Interfaces ; 16(1): 142-152, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112718

RESUMO

While two-dimensional conjugated polymers (2DCPs) have shown great promise in two-photon luminescence (TPL) bioimaging, 2DCP-based TPL imaging agents that can be excited in the second near-infrared window (NIR-II) have rarely been reported so far. Herein, we report two 2DCPs including 2DCP1 and 2DCP2, with octupolar olefin-linked structures for NIR-II-excited bioimaging. The 2DCPs are customized with the fully conjugated donor-acceptor (D-A) linkage and aggregation-induced emission (AIE) active building blocks, leading to good two-photon absorption into the NIR-II window with a 2PACS of ∼64.0 GM per choromophore for both 2DCPs. Moreover, 2DCP1 powders can be exfoliated into water-dispersible nanoplates with a Pluronic F-127 surfactant-assisted temperature-swing method, accompanied by both a drastic reduction of 2PACS throughout the range of 780-1080 nm and a sharp increase of photoluminescence quantum yield to 33.3%. The 2DCP1 nanoplates are subsequently proven to be capable of assisting in visualizing mouse brain vasculatures with a penetration depth of 421 µm and good contrast in vivo, albeit that only 19% of previous 2PACS at 1040 nm is preserved. This work not only provides important insights on how to construct NIR-II excitable 2DCPs for TPL bioimaging but also how to investigate the exfoliation-photophysical property correlation of 2DCPs, which should aid in future research on developing highly efficient TPL bioimaging agents.


Assuntos
Luminescência , Polímeros , Animais , Camundongos , Água , Fótons
15.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512451

RESUMO

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Assuntos
Alanina-tRNA Ligase , Transdução de Sinais , Neoplasias Gástricas , Fatores de Transcrição , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ácido Láctico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo
16.
ACS Nano ; 18(4): 3542-3552, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215406

RESUMO

Prussian blue (PB) is one of the main cathode materials with industrial prospects for the sodium ion battery. The structural stability of PB materials is directly associated with the presence of crystal water within the open 3D framework. However, there remains a lack of consensus regarding whether all forms of crystal water have detrimental effects on the structural stability of the PB materials. Currently, it is widely accepted that interstitial water is the stability troublemaker, whereas the role of coordination water remains elusive. In this work, the dynamic evolution of PB structures is investigated during the crystal water (in all forms) removal process through a variety of online monitoring techniques. It can be inferred that the PB-130 °C retains trace coordination water (1.3%) and original structural integrity, whereas PB-180 °C eliminates almost all of crystal water (∼12.1%, including both interstitial and coordinated water), but inevitably suffers from structural collapse. This is mainly because the coordinated water within the PB material plays a crucial role in maintaining structural stability via forming the -N≡C-FeLS-C≡N- conjugate bridge. Consequently, PB-130 °C with trace coordination water delivers superior reversible capacity (113.6 mAh g-1), high rate capability (charge to >80% capacity in 3 min), and long cycling stability (only 0.012% fading per cycle), demonstrating its promising prospect in practical applications.

17.
Analyst ; 138(2): 559-68, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171932

RESUMO

In the pursuit of electrocatalysts with great economic and ecological values for non-enzymatic glucose sensors, one-dimensional copper@carbon (Cu@C) core-shell coaxial nanowires (NWs) have been successfully prepared via a simple continuous flow wet-chemistry approach from electroplating wastewater. The as-obtained products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy. The electrocatalytic activity of the modified electrodes by Cu@C NWs towards glucose oxidation was investigated by cyclic voltammetry and chronoamperometry. It was found that the as-obtained Cu@C NWs showed good electrochemical properties and could be used as an electrochemical sensor for the detection of glucose molecules. Compared to the other electrodes including the bare Nafion/glassy carbon electrode (GCE) and several hot hybrid nanostructures modified GCE, a substantial decrease in the overvoltage of the glucose oxidation was observed at the Cu@C NWs electrodes with oxidation starting at ca. 0.20 V vs. Ag/AgCl (3 M KCl). At an applied potential of 0.65 V, Cu@C NWs electrodes had a high and reproducible sensitivity of 437.8 µA cm(-2) mM(-1) to glucose. Linear responses were obtained with a detection limit of 50 nM. More importantly, the proposed electrode also had good stability, high resistance against poisoning by chloride ion and commonly interfering species. These good analytical performances make Cu@C NWs promising for the future development of enzyme-free glucose sensors.


Assuntos
Técnicas Eletroquímicas , Glucose/análise , Nanopartículas Metálicas/química , Nanofios/química , Técnicas Biossensoriais , Carbono/química , Cobre/química , Eletrodos , Galvanoplastia , Nanoestruturas , Nanotubos de Carbono/química , Oxirredução , Águas Residuárias
18.
Phys Chem Chem Phys ; 15(7): 2523-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23321627

RESUMO

Microporous carbon materials with extremely small pore size are prepared by employing polyaniline as a carbon precursor and KOH as an activating agent. CO(2) sorption performance of the materials is systematically investigated at the temperatures of 0, 25 and 75 °C. The prepared carbons show very high CO(2) uptake of up to 1.86 and 1.39 mmol g(-1) under 1 bar, 75 °C and 0.15 bar, 25 °C, respectively. These values are amongst the highest CO(2) capture amounts of the known carbon materials. The relation between CO(2) uptake and pore size at different temperatures is studied. An interesting and innovative point that the micropores with pore size smaller than a critical value play a crucial role in CO(2) adsorption at different temperatures is demonstrated. It is found that the higher the sorption temperature is, the smaller this critical value of pore size is. Pores smaller than 0.54 nm are manifested to determine CO(2) capture capacity at high sorption temperature, e.g. 75 °C. This research proposes a basic principle for designing highly efficient CO(2) carbon adsorbents; that is, the adsorbents should be primarily rich in extremely small micropores.

19.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 6): o947-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23795109

RESUMO

The title compound, C32H28Cl2N2O2, was synthesized by a multicomponent reaction of 4-chloro-benzaldehyde, aniline and ethyl aceto-acetate. The central 1,2,5,6-tetra-hydro-pyridine ring exhibits a distorted boat conformation and the two chloro-phenyl rings attached to the central ring at positions 2 and 6 are oriented in opposite directions. The two O atoms of the eth-oxy-carbonyl group are involved in intra-molecular N-H⋯O and C-H⋯O hydrogen bonds. In the crystal, weak C-H⋯O hydrogen bonds link mol-ecules related by translation along the b axis into chains.

20.
Artigo em Inglês | MEDLINE | ID: mdl-24046695

RESUMO

The title compound, C17H18N4O2S·CH3OH, was synthesized by the condensation reaction of o-meth-oxy-benzaldehyde with thio-carbohydrazide in methanol. The two benzene rings are inclined each to other at 31.7 (1)°. Inter-molecular N-H⋯O and bifurcated O-H⋯N(S) hydrogen bonds link two thio-carbonohydrazide and two solvent mol-ecules into a centrosymmetric unit. These units, related by translation along the b axis, are further aggregated into columns through N-H⋯S hydrogen bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA