Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Respir Cell Mol Biol ; 64(4): 441-452, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524306

RESUMO

Chronic obstructive pulmonary disease (COPD) poses a major risk for public health, yet remarkably little is known about its detailed pathophysiology. Definition of COPD as nonreversible pulmonary obstruction revealing more about spatial orientation than about mechanisms of pathology may be a major reason for this. We conducted a controlled observational study allowing for simultaneous assessment of clinical and biological development in COPD. Sixteen healthy control subjects and 104 subjects with chronic bronchitis, with or without pulmonary obstruction at baseline, were investigated. Using both the extent of and change in bronchial obstruction as main scoring criteria for the analysis of gene expression in lung tissue, we identified 410 genes significantly associated with progression of COPD. One hundred ten of these genes demonstrated a distinctive expression pattern, with their functional annotations indicating participation in the regulation of cellular coherence, membrane integrity, growth, and differentiation, as well as inflammation and fibroproliferative repair. The regulatory pattern indicates a sequentially unfolding pathology that centers on a two-step failure of surface integrity commencing with a loss of epithelial coherence as early as chronic bronchitis. Decline of regenerative repair starting in Global Initiative for Chronic Obstructive Lung Disease stage I then activates degradation of extracellular-matrix hyaluronan, causing structural failure of the bronchial wall that is only resolved by scar formation. Although they require independent confirmation, our findings provide the first tangible pathophysiological concept of COPD to be further explored.Clinical trial registered with www.clinicaltrials.gov (NCT00618137).


Assuntos
Remodelação das Vias Aéreas/genética , Bronquite Crônica/genética , Perfilação da Expressão Gênica , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Regeneração/genética , Transcriptoma , Adulto , Idoso , Bronquite Crônica/patologia , Bronquite Crônica/fisiopatologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Tempo , Adulto Jovem
2.
Hum Genet ; 139(3): 309-331, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31324975

RESUMO

DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.


Assuntos
Envelhecimento/fisiologia , Dano ao DNA/fisiologia , Células-Tronco/fisiologia , Animais , Homeostase/fisiologia , Humanos
3.
Biogerontology ; 18(4): 525-533, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28251405

RESUMO

The role of telomere shortening in the induction of replicative cellular senescence (CS) is well known and as a result, the involvement of telomerase and in particular its catalytic subunit, the telomerase reverse transcriptase (TERT) in CS has also been investigated. However, the majority of studies were conducted on cells that generally express high levels of TERT (cancer and immortalized cells) while the role of telomerase in CS in normal cells has been investigated to a much lesser extent. In particular, it was reported that active TERT is expressed in early passages of cultured human keratinocytes but rapidly diminished towards entry to CS, without telomere shortening. With the putative importance of TERT/telomerase in CS and the aging process in mind, we investigated the expression of TERT and telomerase activity in primary cultures of adult human dermal fibroblasts (HDFs) in the in vitro model of replicative CS. We found that (i) HDFs expressed active TERT; (ii) TERT protein levels and telomerase activity were markedly decreased in senescent HDFs; and (iii) the reduction of TERT in the soluble fraction was more pronounced than in the DNA-bound one. The results suggest the importance of the non-canonical (telomere-unrelated) functions of TERT in cellular senescence.


Assuntos
Senescência Celular , DNA/metabolismo , Fibroblastos/enzimologia , Telomerase/metabolismo , Encurtamento do Telômero , Telômero/enzimologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Humanos , Solubilidade , Fatores de Tempo
4.
Biogerontology ; 18(2): 253-262, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28093691

RESUMO

The lungs are highly sensitive to tissue fibrosis, with a clear age-related component. Among the possible triggers of pulmonary fibrosis are repeated inhalations of fine organic particles. How age affects this response, is still far from being fully understood. We examined the impact of middle-age on gene expression in pulmonary fibrosis, using the novel "inhalation challenge set" mouse model. Our results demonstrate that the response of female mice to exposure of Pantoea agglomerans extract primarily involves various immune-related pathways and cell-cell/cell-extracellular matrix interactions. We found that middle-age had a strong effect on the response to the P. agglomerans-induced lung fibrosis, featured by a more rapid response and increased magnitude of expression changes. Genes belonging to innate immunity pathways (such as the TLR signaling and the NK-cell mediated cytotoxicity) were particularly up-regulated in middle-aged animals, suggesting that they may be potential targets for the treatment of pulmonary fibrosis caused by inhalations of organic particles. Our analysis also highlights the relevance of the "inhalation challenge set" mouse model to lung aging and related pathology.


Assuntos
Envelhecimento/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata/imunologia , Fatores Imunológicos/imunologia , Fibrose Pulmonar/imunologia , Animais , Feminino , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pantoea/imunologia
5.
Biogerontology ; 17(4): 763-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27241672

RESUMO

The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Lacerações/metabolismo , Pele/lesões , Pele/metabolismo , Cicatrização/fisiologia , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lacerações/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Pele/patologia
6.
Geroscience ; 46(1): 1271-1284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37535204

RESUMO

Tristetraprolin (TTP), encoded by Zfp36 in mice, is one of the best-characterized tandem zinc-finger mRNA binding proteins involved in mRNA deadenylation and decay. TTPΔARE mice lack an AU-rich motif in the 3'-untranslated regions of TTP mRNA, leading to increased TTP mRNA stability and more TTP protein, resulting in elevated mRNA decay rates of TTP targets. We examined the effect of TTP overexpression on the hematopoietic system in both young and middle-aged mice using TTPΔARE mice and found alterations in blood cell frequencies, with loss of platelets and B220 cells and gains of eosinophils and T cells. TTPΔARE mice also have skewed primitive populations in the bone marrow, with increases in myeloid-biased hematopoietic stem cells (HSCs) but decreases in granulocyte/macrophage-biased multipotent progenitors (MPP3) in both young and middle-aged mice. Changes in the primitive cells' frequencies were associated with transcriptional alterations in the TTP overexpression cells specific to age as well as cell type. Regardless of age, there was a consistent elevation of transcripts regulated by TNFα and TGFß signaling pathways in both the stem and multipotent progenitor populations. HSCs with TTP overexpression had decreased reconstitution potential in murine transplants but generated hematopoietic environments that mitigated the inflammatory response to the collagen antibody-induced arthritis (CAIA) challenge, which models rheumatoid arthritis and other autoimmune disorders. This dampening of the inflammatory response was even present when there was only a small frequency of TTP overexpressing cells present in the middle-aged mice. We provide an analysis of the early hematopoietic compartments with elevated TTP expression in both young and middle-aged mice which inhibits the reconstitution potential of the HSCs but generates a hematopoietic system that provides dominant repression of induced inflammation.


Assuntos
Sistema Hematopoético , Tristetraprolina , Animais , Camundongos , Regiões 3' não Traduzidas , Modelos Animais de Doenças , Sistema Hematopoético/metabolismo , Inflamação/genética , Camundongos Knockout , Tristetraprolina/genética , Tristetraprolina/metabolismo
7.
Aging Cell ; : e14297, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143693

RESUMO

Cellular senescence, a state of persistent growth arrest, is closely associated with aging and age-related diseases. Deciphering the heterogeneity within senescent cell populations and identifying therapeutic targets are paramount for mitigating senescence-associated pathologies. In this study, proteins on the surface of cells rendered senescent by replicative exhaustion and by exposure to ionizing radiation (IR) were identified using mass spectrometry analysis, and a subset of them was further studied using single-cell CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) analysis. Based on the presence of proteins on the cell surface, we identified two distinct IR-induced senescent cell populations: one characterized by high levels of CD109 and CD112 (cluster 3), the other characterized by high levels of CD112, CD26, CD73, HLA-ABC, CD54, CD49A, and CD44 (cluster 0). We further found that cluster 0 represented proliferating and senescent cells in the G1 phase of the division cycle, and CITE-seq detection of cell surface proteins selectively discerned those in the senescence group. Our study highlights the heterogeneity of senescent cells and underscores the value of cell surface proteins as tools for distinguishing senescent cell programs and subclasses, paving the way for targeted therapeutic strategies in disorders exacerbated by senescence.

8.
Nat Commun ; 15(1): 1088, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316796

RESUMO

Dietary restriction has shown benefits in physiological, metabolic, and molecular signatures associated with aging but is a difficult lifestyle to maintain for most individuals. In mice, a less restrictive diet that allows for cyclical periods of reduced calories mitigates aging phenotypes, yet the effects of such an intervention in a genetically heterogenous, higher-order mammal has not been examined. Here, using middle-aged rhesus macaques matched for age and sex, we show that a regimen of 4 days of low-calorie intake followed by 10 days of ad libitum feeding (4:10 diet) performed in repeating cycles over 12 weeks led to significant loss of weight and fat percentage, despite the free access to food for most of the study duration. We show the 4-day restriction period is sufficient to drive alterations to the serum metabolome characterized by substantial differences in lipid classes. These phenotypes were paralleled by changes in the gut microbiome of restricted monkeys that highlight the involvement of a microbiome-metabolome axis. This regimen shows promising phenotypes, with some sex-dimorphic responses, including residual memory of the diet. As many calorie restriction interventions are difficult to sustain, we propose that this short-term diet may be easier to adhere to and have benefits directly relevant to human aging.


Assuntos
Ingestão de Energia , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Macaca mulatta , Ingestão de Energia/fisiologia , Restrição Calórica , Metaboloma , Mamíferos
9.
Geroscience ; 45(4): 2213-2228, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36826621

RESUMO

Short telomeres are a defining feature of telomere biology disorders (TBDs), including dyskeratosis congenita (DC), for which there is no effective general cure. Patients with TBDs often experience bone marrow failure. NAD, an essential metabolic coenzyme, is decreased in models of DC. Herein, using telomerase reverse transcriptase null (Tert-/-) mice with critically short telomeres, we investigated the effect of NAD supplementation with the NAD precursor, nicotinamide riboside (NR), on features of health span disrupted by telomere impairment. Our results revealed that NR ameliorated body weight loss in Tert-/- mice and improved telomere integrity and telomere dysfunction-induced systemic inflammation. NR supplementation also mitigated myeloid skewing of Tert-/- hematopoietic stem cells. Furthermore, NR alleviated villous atrophy and inflammation in the small intestine of Tert-/- transplant recipient mice. Altogether, our findings support NAD intervention as a potential therapeutic strategy to enhance aspects of health span compromised by telomere attrition.


Assuntos
Disceratose Congênita , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , NAD , Telômero/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Inflamação
10.
Elife ; 112022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507394

RESUMO

Many age-associated changes in the human hematopoietic system have been reproduced in murine models; however, such changes have not been as robustly explored in rats despite the fact these larger rodents are more physiologically similar to humans. We examined peripheral blood of male F344 rats ranging from 3 to 27 months of age and found significant age-associated changes with distinct leukocyte population shifts. We report CD25+ CD4+ population frequency is a strong predictor of healthy aging, generate a model using blood parameters, and find rats with blood profiles that diverge from chronologic age indicate debility; thus, assessments of blood composition may be useful for non-lethal disease profiling or as a surrogate measure for efficacy of aging interventions. Importantly, blood parameters and DNA methylation alterations, defined distinct juncture points during aging, supporting a non-linear aging process. Our results suggest these inflection points are important considerations for aging interventions. Overall, we present rat blood aging metrics that can serve as a resource to evaluate health and the effects of interventions in a model system physiologically more reflective of humans.


Our blood contains many types of white blood cells, which play important roles in defending the body against infections and other threats to our health. The number of these cells changes with age, and this in turn contributes to many other alterations that happen in the body as we get older. For example, the immune system generally gets weaker at fighting infections and preventing other cells from developing into cancer. On top of that, the white blood cells themselves can become cancerous, resulting in several types of blood cancer that are more likely to happen in older people. Many previous studies have examined how the number of white blood cells changes with age in humans and mice. However, our understanding of this process in rats is still poor, despite the fact that the way the human body works has more in common with the rat body than the mouse body. Here, Yanai, Dunn et al. have studied samples of blood from rats between three to 27 months old. The experiments found that it is possible to accurately predict the age of healthy rats by measuring the frequency of populations of white blood cells, especially a certain type known as CD25+ CD4+ cells. If the animals had any form of illness, their predicted age deviated from their actual age. Furthermore, while some changes in the blood were gradual and continuous, others displayed distinct shifts when the rats reached specific ages. In the future, these findings may be used as a tool to help researchers diagnose illnesses in rats before the animals develop symptoms, or to more easily establish if a treatment is having a positive effect on the rats' health. The work of Yanai, Dunn et al. also provides new insights into aging that could potentially aid the design of new screening methods to predict cancer and intervene using a model system that is more similar to humans.


Assuntos
Envelhecimento , Leucócitos , Envelhecimento/genética , Animais , Metilação de DNA , Masculino , Camundongos , Dinâmica Populacional , Ratos , Ratos Endogâmicos F344
11.
Aging Cell ; 21(5): e13609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429111

RESUMO

Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.


Assuntos
Proteoma , Envelhecimento da Pele , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibroblastos/metabolismo , Humanos , Longevidade , Pessoa de Meia-Idade , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Adulto Jovem
12.
Biogerontology ; 12(6): 591-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21667230

RESUMO

Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.


Assuntos
Envelhecimento/patologia , Envelhecimento da Pele/patologia , Pele/patologia , Cicatrização , Fatores Etários , Envelhecimento/genética , Animais , Procedimentos Cirúrgicos Dermatológicos , Genótipo , Longevidade , Camundongos , Camundongos Transgênicos , Modelos Animais , Fenótipo , Envelhecimento da Pele/genética , Fatores de Tempo , Cicatrização/genética
13.
Sci Rep ; 11(1): 19269, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588506

RESUMO

Tissue fibrosis is a major driver of pathology in aging and is involved in numerous age-related diseases. The lungs are particularly susceptible to fibrotic pathology which is currently difficult to treat. The mouse bleomycin-induced fibrosis model was developed to investigate lung fibrosis and widely used over the years. However, a systematic analysis of the accumulated results has not been performed. We undertook a comprehensive data mining and subsequent manual curation, resulting in a collection of 213 genes (available at the TiRe database, www.tiredb.org ), which when manipulated had a clear impact on bleomycin-induced lung fibrosis. Our meta-analysis highlights the age component in pulmonary fibrosis and strong links of related genes with longevity. The results support the validity of the bleomycin model to human pathology and suggest the importance of a multi-target therapeutic strategy for pulmonary fibrosis treatment.


Assuntos
Longevidade/genética , Pulmão/patologia , Fibrose Pulmonar/genética , Animais , Bleomicina/administração & dosagem , Bleomicina/toxicidade , Mineração de Dados , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Biologia de Sistemas
14.
NPJ Aging Mech Dis ; 7(1): 25, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548492

RESUMO

NAD+ supplementation has significant benefits in compromised settings, acting largely through improved mitochondrial function and DNA repair. Elevating NAD+ to physiological levels has been shown to improve the function of some adult stem cells, with implications that these changes will lead to sustained improvement of the tissue or system. Here, we examined the effect of elevating NAD+ levels in models with reduced hematopoietic stem cell (HSC) potential, ATM-deficient and aged WT mice, and showed that supplementation of nicotinamide riboside (NR), a NAD+ precursor, improved lymphoid lineage potential during supplementation. In aged mice, this improved lymphoid potential was maintained in competitive transplants and was associated with transcriptional repression of myeloid gene signatures in stem and lineage-committed progenitor cells after NR treatment. However, the altered transcriptional priming of the stem cells toward lymphoid lineages was not sustained in the aged mice after NR removal. These data characterize significant alterations to the lineage potential of functionally compromised HSCs after short-term exposure to NR treatment.

15.
Mech Ageing Dev ; 191: 111331, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798509

RESUMO

The decline of stem cell performance with age is a potential paramount mechanism of aging. Hematopoietic stem cells (HSCs) are perhaps the most studied and best characterized tissue-specific somatic stem cells. As such, HSCs offer an excellent research model of how aging affects stem cell performance, and vice versa. Studies from recent years have elucidated major aging phenotypes of HSCs including a decline in reconstitution potential, altered differentiation predisposition, an increase in number, accumulation of DNA damage/mutations and several others. However, what drives these changes, and exactly how they translate to pathology is poorly understood. Recent studies point to proliferative stress of HSCs as a potential driver of their aging and the resulting pathologies. Here we discuss the recent discoveries and suggest the context in which aging phenotypes could be driven, and the relevant mechanisms by which HSCs could be affected.


Assuntos
Diferenciação Celular , Proliferação de Células , Senescência Celular , Dano ao DNA , Células-Tronco Hematopoéticas/metabolismo , Animais , Humanos
16.
Mech Ageing Dev ; 130(1-2): 33-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18486187

RESUMO

An association between aging/longevity and cancer has long been suggested, yet the evolutionary and molecular links between these complicated traits remain elusive. Here, we analyze the relationship between longevity- and cancer-associated genes/proteins (LAGs/LAPs and CAGs/CAPs, respectively). Specifically, we address the following questions: (1) to what extent the CAGs and LAGs are evolutionary conserved and how they (or their orthologs) are related to each other in diverse species? (2) Could they act in cooperative manner at a protein level via protein-protein interactions (PPIs) and, if so, by forming a PPI network? We found that (i) the common genes (both LAGs and CAGs) show the same remarkable trend from yeast to humans: tumor suppressors are associated with lifespan extension, whereas the oncogenes are associated with reduced lifespan; (ii) LAPs and CAPs have a significantly higher average connectivity than other proteins in the human interactome; and (iii) LAPs and CAPs may act in cooperative manner via numerous direct and indirect PPIs between themselves and eventually by forming a PPI network. Altogether, the results of this study provide strong evidence for the existence of evolutionary and molecular links between longevity and cancer.


Assuntos
Envelhecimento/genética , Evolução Molecular , Regulação Neoplásica da Expressão Gênica/fisiologia , Longevidade/genética , Neoplasias/genética , Idoso , Animais , Senescência Celular/genética , Genes Supressores de Tumor , Genômica , Humanos , Modelos Animais , Oncogenes/genética , Especificidade da Espécie
17.
Ageing Res Rev ; 41: 18-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106993

RESUMO

Since Hayflick's discovery of cellular senescence (CS), a great volume of knowledge in the field has been accumulated and intensively discussed. Here, we attempted to organize the evidence "for" and "against" the hypothesized causal role of CS in aging. For that purpose, we utilized robust Koch-like logical criteria, based on the assumption that some quantitative relationships between the accumulation of senescent cells and aging rate should exist. If so, it could be expected that (i) the "CS load" would be greater in the premature aging phenotype and lesser in longevity phenotype; (ii) CS would promote age-related diseases, and (iii) the interventions that modulate the levels of senescent cells should also modulate health/lifespan. The analysis shows that CS can be considered a causal factor of aging and an important player in various age-related diseases, though its contribution may greatly vary across species. While the relative impact of senescent cells to aging could overall be rather limited and their elimination is hardly expected to be the "fountain of youth", the potential benefits of the senolytic strategy seems a promising option in combating age-related diseases and extending healthspan.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Longevidade/fisiologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Animais , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fenótipo
18.
Aging Cell ; 16(6): 1267-1275, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28836369

RESUMO

Hundreds of genes, when manipulated, affect the lifespan of model organisms (yeast, worm, fruit fly, and mouse) and thus can be defined as longevity-associated genes (LAGs). A major challenge is to determine whether these LAGs are model-specific or may play a universal role as longevity regulators across diverse taxa. A wide-scale comparative analysis of the 1805 known LAGs across 205 species revealed that (i) LAG orthologs are substantially overrepresented, from bacteria to mammals, compared to the entire genomes or interactomes, and this was especially noted for essential LAGs; (ii) the effects on lifespan, when manipulating orthologous LAGs in different model organisms, were mostly concordant, despite a high evolutionary distance between them; (iii) LAGs that have orthologs across a high number of phyla were enriched in translational processes, energy metabolism, and DNA repair genes; (iv) LAGs that have no orthologs out of the taxa in which they were discovered were enriched in autophagy (Ascomycota/Fungi), G proteins (Nematodes), and neuroactive ligand-receptor interactions (Chordata). The results also suggest that antagonistic pleiotropy might be a conserved principle of aging and highlight the importance of overexpression studies in the search for longevity regulators.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Longevidade/genética , Saccharomyces cerevisiae/genética , Animais , Humanos
19.
Oncotarget ; 7(16): 21145-55, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27049721

RESUMO

Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.


Assuntos
Bases de Dados Factuais , Genes/fisiologia , Envelhecimento da Pele/fisiologia , Pele/citologia , Cicatrização/fisiologia , Animais , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Longevidade , Camundongos , Fenótipo , Ratos , Suínos
20.
Aging (Albany NY) ; 7(9): 664-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26399448

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an age-related fatal disease with unknown etiology and no effective treatment. In this study, we show that primary cultures of fibroblasts derived from lung biopsies of IPF patients exhibited (i) accelerated replicative cellular senescence (CS); (ii) high resistance to oxidative-stress-induced cytotoxicity or CS; (iii) a CS-like morphology (even at the proliferative phase); and (iv) rapid accumulation of senescent cells expressing the myofibroblast marker α-SMA. Our findings suggest that CS could serve as a bridge connecting lung aging and its quite frequent outcome -- pulmonary fibrosis, and be an important player in the disease progression. Consequently, targeting senescent cells offers the potential of being a promising therapeutic approach.


Assuntos
Senescência Celular , Fibroblastos/patologia , Fibrose Pulmonar/patologia , Actinas/biossíntese , Actinas/genética , Idoso , Divisão Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Progressão da Doença , Humanos , Pulmão/patologia , Pessoa de Meia-Idade , Estresse Oxidativo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA