Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101818, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278432

RESUMO

Gonadal white adipose tissue (gWAT) can regulate gametogenesis via modulation of neuroendocrine signaling. However, the effect of gWAT on the local microenvironment of the gonad was largely unknown. Herein, we ruled out that gWAT had a neuroendocrine effect on gonad function through a unilateral lipectomy strategy, in which cutting off epididymal white adipose tissue could reduce seminiferous tubule thickness and decrease sperm counts only in the adjacent testis and epididymis of the affected gonad. Consistent with the results in males, in females, ovary mass was similarly decreased by lipectomy. We determined that the defects in spermatogenesis were mainly caused by augmented apoptosis and decreased proliferation of germ cells. Transcriptome analysis suggested that lipectomy could disrupt immune privilege and activate immune responses in both the testis and ovary on the side of the lipectomy. In addition, lipidomics analysis in the testis showed that the levels of lipid metabolites such as free carnitine were elevated, whereas the levels of glycerophospholipids such as phosphatidylcholines and phosphatidylethanolamines were decreased, which indicated that the metabolic niche was also altered. Finally, we show that supplementation of phosphatidylcholine and phosphatidylethanolamine could partially rescue the observed phenotype. Collectively, our findings suggest that gWAT is important for gonad function by not only affecting whole-body homeostasis but also via maintaining local metabolic and immune niches.


Assuntos
Tecido Adiposo Branco , Gônadas , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Epididimo , Feminino , Masculino , Camundongos , Espermatogênese , Testículo/metabolismo
2.
Mol Reprod Dev ; 90(10-11): 774-781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733694

RESUMO

Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.


Assuntos
Colesterol , Ácido Mevalônico , Masculino , Humanos , Ácido Mevalônico/metabolismo , Colesterol/metabolismo , Reprodução , Testículo/metabolismo
3.
Zool Res ; 45(3): 601-616, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766744

RESUMO

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Assuntos
Comunicação Celular , Meiose , Animais , Masculino , Camundongos , Meiose/fisiologia , Humanos , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Testículo/metabolismo , Testículo/citologia , Espermatogênese/fisiologia , Regulação da Expressão Gênica , Azoospermia/genética , Transcrição Gênica , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , Análise da Expressão Gênica de Célula Única
4.
Dev Cell ; 58(21): 2376-2392.e6, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37643613

RESUMO

Embryo implantation requires temporospatial maternal-embryonic dialog. Using single-cell RNA sequencing for the uterus from 2.5 to 4.5 days post-coitum (DPC) and bulk sequencing for the corresponding embryos of 3.5 and 4.0 DPC pregnant mice, we found that estrogen-responsive luminal epithelial cells (EECs) functionally differentiated into adhesive epithelial cells (AECs) and supporting epithelial cells (SECs), promoted by progesterone. Along with maternal signals, embryonic Pdgfa and Efna3/4 signaling activated AECs and SECs, respectively, enhancing the attachment of embryos to the endometrium and furthering embryo development. This differentiation process was largely conserved between humans and mice. Notably, the developmental defects of SOX9-positive human endometrial epithelial cells (similar to mouse EEC) were related to thin endometrium, whereas functional defects of SEC-similar unciliated epithelial cells were related to recurrent implantation failure (RIF). Our findings provide insights into endometrial luminal epithelial cell development directed by maternal and embryonic signaling, which is crucial for endometrial receptivity.


Assuntos
Implantação do Embrião , Células Epiteliais , Gravidez , Feminino , Humanos , Animais , Camundongos , Implantação do Embrião/genética , Desenvolvimento Embrionário , Endométrio/fisiologia , Diferenciação Celular
5.
Sci Rep ; 12(1): 22234, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564484

RESUMO

The stability of surrounding rock with bolt support depends on the stability within the reinforcement range. To understand the reinforcing mechanism of a rectangular roadway bolt fully and accurately, a quantitative method for evaluating the stability of the surrounding rock of a rectangular roadway must be developed. First, a roof beam model of a rectangular tunnel is established according to the deformation law of surrounding rock. Based on the elastic-plastic theory, the deflection calculation formula can be derived, and the ultimate load of the roof beam can be obtained under the plastic state without support. Second, based on the reinforcement effect of bolts, a model of a surrounding rock reinforcement body is established, the physical and mechanical properties of this body are deduced, and a method for evaluating the stability of surrounding rock is derived. Finally, by considering actual engineering cases, the theoretical calculation results of surrounding rock deformation are compared with the numerical simulation and field monitoring results. Moreover, the influence of different parameters of the bolt support on the mechanical characteristics and stability of reinforcement is investigated. The results show that the theoretical calculations approximate the numerical simulation and field monitoring values, thus verifying the rationality of the theory. The physical and mechanical properties and stability of the surrounding rock reinforcement body are considerably affected by changes in bolt length and spacing. The anchor design must apply the following principle: the bolt must either be long and sparsely spaced or short and densely spaced. The theory presented in this paper provides a relatively simple and fast quantitative calculation method for the study of the surrounding rock stability of bolt-supported rectangular roadways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA