Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(45): 13179-13186, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724383

RESUMO

Investigating the surface properties of heteroatom-doped carbon materials is essential because these versatile materials have found use in a variety of energy and environmental applications; an understanding of these properties would also lead to an improved appreciation of the direct interaction between the reactant and the functionalized surface. Herein, we explore the effect of boron (B) doping on the surface properties of activated carbon (AC) materials based on their water adsorption behavior and oxygen reduction reaction. In the high-temperature B doping process, B-doped AC materials at 1400 °C exhibit an open pore structure with B-O bonds, whereas at a temperature of 1600 °C, a nonporous structure containing a large amount of B-C bonds prevails. The B-O species act as active sites for water adsorption on the carbon surface. On the basis of the isothermal adsorption heat, we suggest that B atoms are present at the pore openings and on the surfaces. The B-O moieties at the open edges improve the electrocatalytic activity, whereas the B-C bonds at the closed edges decrease the electrocatalytic activity because of the stable structure of these bonds. Our findings provide new evidence for the electrocatalytic properties associated with the structure of B-doped edges.

2.
Anal Bioanal Chem ; 413(4): 1193-1202, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33403427

RESUMO

Carbon fiber (CNF), prepared by carbonization of electrospun polyacrylonitrile (PAN) fibers, is systematically investigated as a mediator to replace conventional organic matrices for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). CNF exhibits a high salt tolerance, sensitivity, and resolution for organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) analysis of various analytes under both positive and negative ionization modes. Especially, saccharides, a neutral molecule having low negative ionization efficiency, are successfully detected with CNF. Taken together, this study clearly demonstrates CNF is a promising material to develop an efficient and universal platform for LDI-MS analysis regardless of preferential ionization modes of analytes. Graphical abstract.

3.
Nanotechnology ; 25(39): 395702, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25201016

RESUMO

Graphene synthesized via chemical vapor deposition is a notable candidate for flexible large-area transparent electrodes due to its great physical properties and its 2D activated surface area. Electrochromic devices in optical displays, smart windows, etc are suitable applications for graphene when used as a transparent conductive electrode. In this study, various-layer graphene was synthesized via chemical vapor deposition, and inorganic WO(x) was deposited on the layers, which have advantageous columnar structures and W(6+) and W(4+) oxidation states. The characteristics of graphene and WO(x) were verified using optical transmittance, Raman spectroscopy, x-ray photoelectron spectroscopy and scanning electron microscopy. The optimum transparent conductive electrode condition for controlling graphene layers was investigated based on the optical density and cyclic voltammetry. Electrochromic devices were fabricated using a three-layer graphene electrode, which had the best optical density. The graphene in the flexible electrochromic device demonstrated a potential for replacing ITO in flexible electronics.

4.
Nanotechnology ; 24(18): 185604, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23579433

RESUMO

A chemical defect healing of reduced graphene oxide (RGO) was carried out via intramolecular cross-dehydrogenative coupling (ICDC) with FeCl3 at room temperature. The Raman intensity ratio of the G-band to the D-band, the IG/ID ratio, of the RGO was increased from 0.77 to 1.64 after the ICDC reaction. From XPS measurements, the AC=C/AC-C ratio, where the peak intensities from the C=C and C-C bonds are abbreviated as AC=C and AC-C, of the RGO was increased from 2.88 to 3.79. These results demonstrate that the relative amount of sp(2)-hybridized carbon atoms is increased by the ICDC reaction. It is of great interest that after the ICDC reaction the electrical conductivity of the RGO was improved to 71 S cm(-1), which is 14 times higher than that of as-prepared RGO (5 S cm(-1)).

5.
Nanotechnology ; 24(15): 155604, 2013 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-23529153

RESUMO

Carbon nanomaterials are generally used to promote the thermal conductivity of polymer composites. However, individual graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) limit the realization of the desirable thermal conductivity of the composite in both through- and in-plane directions. In this work, we present the thermal conductivity enhancement of the epoxy composite with carbon hybrid fillers composed of CNTs directly grown on the GNP support. The composite with 20 wt% hybrid filler loading showed 300% and 50% through-plane thermal conductivity improvements in comparison with the individual CNTs and GNPs, respectively. Moreover, it showed an enhanced thermal conductivity of up to 12% higher than that of the simply mixed GNP and CNT fillers. In more detail, hybrid fillers, whose CNTs were synthesized on the GNP support (Support C, Fe/Mo-MgO:GNP=1:0.456) for 60 min via chemical vapor deposition process, presented the highest through-plane thermal conductivity of 2.41 W m-1 K-1 in an epoxy composite.

6.
ACS Omega ; 6(10): 7015-7022, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748615

RESUMO

In this study, we describe the adsorption behavior of water (H2O) in the interstitial space of single-walled carbon nanotubes (SWCNTs). A highly dense SWCNT (HD-SWCNT) film with a remarkably enhanced interstitial space was fabricated through mild HNO3/H2SO4 treatment. The N2, CO2, and H2 adsorption isotherm results indicated remarkably developed micropore volumes (from 0.10 to 0.40 mL g-1) and narrower micropore widths (from 1.5 to 0.9 nm) following mild HNO3/H2SO4 treatment, suggesting that the interstitial space was increased from the initial densely-packed network assembly structure of the SWCNTs. The H2O adsorption isotherm of the HD-SWCNT film at 303 K showed an increase in H2O adsorption (i.e., by ∼170%), which increased rapidly from the critical value of relative pressure (i.e., 0.3). Despite the remarkably enhanced adsorption capacity of H2O, the rates of H2O adsorption and desorption in the interstitial space did not change. This result shows an adsorption behavior different from that of the fast transport of H2O molecules in the internal space of the SWCNTs. In addition, the adsorption capacities of N2, CO2, H2, and H2O molecules in the interstitial space of the HD-SWCNT film showed a linear relationship with the kinetic diameter, indicating an adsorption behavior that is highly dependent on the kinetic diameter.

7.
Polymers (Basel) ; 12(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295199

RESUMO

In this study, we investigated the synergistic effects of thermally conductive hybrid carbonaceous fillers of mesophase pitch-based carbon fibers (MPCFs) and reduced graphene oxides (rGOs) on the thermal conductivity of polymer matrix composites. Micro-sized MPCFs with different lengths (50 µm, 200 µm, and 6 mm) and nano-sized rGOs were used as the thermally conductive fillers used for the preparation of the heat-dissipation polymer composites. For all MPCF fillers with a different length, the thermal conductivity values of the MPCF/epoxy composites were proportional to the MPCF length and loading amount (0-50 wt%) of MPCFs. For an MPCF:rGO weight ratio of 49:1 (total loading amount of 50 wt%), the thermal conductivity values of MPCF-rGO/epoxy composites loaded with MPCFs of 50 µm, 200 µm, and 6 mm increased from 5.56 to 7.98 W/mK (approximately 44% increase), from 7.36 to 9.80 W/mK (approximately 33% increase), and from 11.53 to 12.58 W/mK (approximately 9% increase) compared to the MPCF/epoxy composites, respectively, indicating the synergistic effect on the thermal conductivity enhancement. The rGOs in the MPCF-rGO/epoxy composites acted as thermal bridges between neighboring MPCFs, resulting in the formation of effective heat transfer pathways. In contrast, the MPCF-rGO/epoxy composites with MPCF:rGO weight ratios of 48:2 and 47:3 decreased the synergistic effect more significantly compared to rGO content of 1 wt%, which is associated with the agglomeration of rGO nanoparticles. The synergistic effect was inversely proportional to the MPCF length. A theoretical approach, the modified Mori-Tanaka model, was used to estimate the thermal conductivity values of the MPCF-rGO/epoxy composites, which were in agreement with the experimentally measured values for MPCF-rGO/epoxy composites loaded with short MPCF lengths of 50 and 200 µm.

8.
Talanta ; 209: 120531, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892054

RESUMO

The exfoliated MXene (e-MXene) is systematically investigated as a mediator for laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) analysis. Whereas un-exfoliated MXene has no activity for LDI-MS analysis, the e-MXene presents a high resolution, salt-tolerance and efficiency for LDI-MS analysis of various small molecules regardless of their polarity, aromaticity and molecular weight owing to its physicochemical properties such as high laser energy absorption, electrical conductivity and photothermal conversion. Based on our findings, it is clearly confirmed that e-MXene is a promising material for the development of an efficient platform for LDI-MS analysis of small molecules.

9.
Sci Rep ; 9(1): 13313, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527704

RESUMO

Recently, some studies have utilized silicon (Si) as an anode material of lithium ion battery by recycling Si from the slurry of wafer slicing dust. The filtration of Si particles condensed from Si vapors that were exhausted from the ingot growing furnace could propose another method of Si recycling. In this study, we investigated the possibility of using such collected silicon oxides (SiOx) particles as an anode material. After collecting SiOx particles, FE-SEM, TEM, EDS, XRD, XPS analysis, and charge/discharge test were carried out to investigate characteristics and usability of these particles. FE-SEM and FE-TEM images showed that these particles mainly consisted of spherical primary particles with a diameter of 10 nm or less. Agglomerates of these primary particles were larger than 300 nm in diameter. In TEM image and EDS analysis, crystalline particles were observed along with amorphous particles. As a result of XRD analysis, amorphous silica (SiO2) and crystalline Si were observed. Charge/discharge tests were carried out to determine the feasibility of using these particles as an anode material for lithium ion batteries. A cycle efficiency of 40.6% was obtained in the test in which the total number of charge/discharge cycle was 100 under the condition of C-rate 0.2 for the first three times and C-rate 1.0 for the remaining 97 times. Results showed that these collected particles could be used as an anode material for lithium ion batteries.

10.
Polymers (Basel) ; 11(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614671

RESUMO

We investigated the heat transfer behavior of thermally conductive networks with one-dimensional carbon materials to design effective heat transfer pathways for hybrid filler systems of polymer matrix composites. Nano-sized few-walled carbon nanotubes (FWCNTs) and micro-sized mesophase pitch-based carbon fibers (MPCFs) were used as the thermally conductive materials. The bulk density and thermal conductivity of the FWCNT films increased proportionally with the ultrasonication time due to the enhanced dispersibility of the FWCNTs in an ethanol solvent. The ultrasonication-induced densification of the FWCNT films led to the effective formation of filler-to-filler connections, resulting in improved thermal conductivity. The thermal conductivity of the FWCNT-MPCF hybrid films was proportional to the MPCF content (maximum thermal conductivity at an MPCF content of 60 wt %), indicating the synergistic effect on the thermal conductivity enhancement. Moreover, the MPCF-to-MPCF heat transfer pathways in the FWCNT-MPCF hybrid films were the most effective in achieving high thermal conductivity due to the smaller interfacial area and shorter heat transfer pathway of the MPCFs. The FWCNTs could act as thermal bridges between neighboring MPCFs for effective heat transfer. Furthermore, the incorporation of Ag nanoparticles of approximately 300 nm into the FWCNT-MPCF hybrid film dramatically enhanced the thermal conductivity, which was closely related to a decreased thermal interfacial resistance at the intersection points between the materials. Epoxy-based composites loaded with the FWCNTs, MPCFs, FWCNT-MPCF hybrids, and FWCNT-MPCF-Ag hybrid fillers were also fabricated. A similar trend in thermal conductivity was observed in the polymer matrix composite with carbon-based hybrid films.

11.
Sci Rep ; 9(1): 20170, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882924

RESUMO

Nitrogen (N)-doped nanostructured carbons have been actively examined as promising alternatives for precious-metal catalysts in various electrochemical energy generation systems. Herein, an effective approach for synthesizing N-doped single-walled carbon nanohorns (SWNHs) with highly electrocatalytic active sites via controlled oxidation followed by N2 plasma is presented. Nanosized holes were created on the conical tips and sidewalls of SWNHs under mild oxidation, and subsequently, the edges of the holes were easily decorated with N atoms. The N atoms were present preferentially in a pyridinic configuration along the edges of the nanosized holes without significant structural change of the SWNHs. The enriched edges decorated with the pyridinic-N atoms at the atomic scale increased the number of active sites for the oxygen reduction reaction, and the inherent spherical three-dimensional feature of the SWNHs provided good electrical conductivity and excellent mass transport. We demonstrated an effective method for promoting the electrocatalytic active sites within N-doped SWNHs by combining defect engineering with the preferential formation of N atoms having a specific configuration.

12.
J Colloid Interface Sci ; 318(2): 365-71, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18036603

RESUMO

We fabricated random network films of highly pure single-wall carbon nanotubes (SWCNTs) on flexible polyethylene terephthalate substrate by dip- and spray-coatings and their combination method for application to flexible transparent conducting films (TCFs). The dip-coating treatment was a more efficient method for fabricating the SWCNT-TCFs of high electrical conductivity without drastic drop in the optical transmittance, compared to the spray-coating one. This should be primarily due to more loose contact in intertube and interbundle junctions of the spray-coated SWCNT networks. Although the electrical conductivity of the SWCNT-TCFs was dramatically enhanced as increasing the number of dipping times, the dip-coating treatment with a large number of dipping times considerably reduced the transmittance without corresponding improvement in the electrical conductivity, indicating the patch-wise coating of the SWCNTs. On the other hand, the combination of the spray- and dip-coatings gave a supplementary effect for formation of a highly transparent film of better electrical conductivity. For SWCNT-TCF coated with 100 dipping times, an additional spray-coating dramatically decreased the sheet resistance from 1300 to 340 Omega/square, which is accompanied by slight reduction of the transmittance from 88 to 80%. Therefore, the post spray-coating can efficiently bridge the patch-wise SWCNT networks produced by the successive dip-coating.


Assuntos
Membranas Artificiais , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Polietilenotereftalatos/química , Cristalização , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície , Temperatura
13.
Materials (Basel) ; 11(10)2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30249007

RESUMO

MXene and graphene based thin, flexible and low-density composite were prepared by cost effective spray coating and solvent casting method. The fabricated composite was characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX). The prepared composites showed hydrophobic nature with higher contact angle of 126°, -43 mN·m-1 wetting energy, -116 mN·m-1 spreading Coefficient and 30 mN·m-1 lowest work of adhesion. The composites displayed excellent conductivity of 13.68 S·cm-1 with 3.1 Ω·sq-1 lowest sheet resistance. All the composites showed an outstanding thermal stability and constrain highest weight lost until 400 °C. The MXene-graphene foam exhibited excellent EMI shielding of 53.8 dB (99.999%) with reflection of 13.10 dB and absorption of 43.38 dB in 8⁻12.4 GHz. The single coated carbon fabric displayed outstanding absolute shielding effectiveness of 35,369.82 dB·cm²·g-1. The above results lead perspective applications such as aeronautics, radars, air travels, mobile phones, handy electronics and military applications.

14.
J Colloid Interface Sci ; 314(1): 18-24, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17604043

RESUMO

Adsorption from toluene solution of phenanthrene and tetracene on single wall carbon nanotubes (SWCNT) is measured. Comparison of adsorbents such as laser ablation and HipCO samples reveals multiple factors influencing the adsorption mechanism. Acid functionalized carbon nanotubes have shown markedly increased adsorbability for the polyaromatic molecules. The linear tetracene molecule's adsorption is more promoted on nanotubes with increasing diameter, but also additionally with presence of the carboxylic groups. The adsorption mechanisms on carboxylic sites and on the bold, non-functionalized large-diameter nanotubes are suggested and supported by detailed characterization of the SWCNTs applied.

15.
J Phys Chem B ; 109(20): 10004-8, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16852209

RESUMO

The formation of a massive quantity of single-wall carbon nanotube (SWCNT) superbundles has been introduced through sonicating SWCNTs in tetramethylene sulfone/chloroform solution in which nitronium hexafluoroantimonate (NHFA) is dissolved. Most SWCNT bundles with the NHFA treatment are enlarged by about 10 times compared with those of the pristine sample. It is proposed that the formation of SWCNTs can occur in solution by formation of an SWCNT-intercalant charge complex. The specific surface area of the superbundle is almost doubled, while its micropore surface area is amplified by about 7 times. This development of microporosity results from the enhanced interstitial sites in the SWCNT superbundles.

16.
J Phys Chem B ; 109(41): 19242-8, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16853485

RESUMO

Coexistence of metallic and semiconducting carbon nanotubes has often been a bottleneck in many applications and much fundamental research. Single-walled carbon nanotubes (SWCNTs) were dissolved in HNO3/H2SO4 mixture to confirm differing reactivity between metallic (m) and semiconducting (s) SWCNTs. With HNO3/H2SO4 treatment, s-SWCNTs remained intact, while m-SWCNTs were completely removed for SWCNTs with small diameters less than 1.1 nm, which was confirmed by resonant Raman and optical absorption spectra. We also showed that nitronium ions (NO2+) dissolved in the HNO3/H2SO4 solution could preferably attack the m-SWCNTs, which was supported by our theoretical calculation. This clear selectivity can be explained by the preferential adsorption of positively charged NO2+ on m-SWCNTs due to more available electron densities at the Fermi level in the m-SWCNTs. We report for the first time a selective removal of small-diameter m-SWCNTs by using HNO3/H2SO4 solution, which presented a striking contrast to the diameter-selective removal of SWCNTs by oxidative etching reported previously.

17.
J Nanosci Nanotechnol ; 5(6): 970-4, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16060162

RESUMO

We characterized single-walled carbon nanotubes before and after HNO3/H2SO4 treatments for different times by scanning electron microscopy, Raman spectroscopy, and N2 adsorption at 77 K. Single-walled carbon nanotube assembly revealed a bimodal pore structure of microporosity (surface area of 476 m2 g(-1)) and mesoporosity (surface area of 476 m2 g(-1)) with a high total surface area of 1048 m2g(-1). The microporosity increased prominently after HNO3/H2SO4 treatments, whereas the mesoporosity decreased progressively with the treatment time. The HNO3/H2SO4 treatment of nanotubes induced an aggregation and alignment that should transform larger mesopores of nanotube assemblies into smaller ones, and smaller mesopores into micropores, resulting in the decrease of external surface area. This effect was attributed to the presence of abundant defects on the tube wall that were saturated by functional groups during the acid treatment of the single-walled carbon nanotubes.


Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Nitrogênio/química , Adsorção , Teste de Materiais , Conformação Molecular , Nanotubos de Carbono/análise , Ácido Nítrico/química , Tamanho da Partícula , Porosidade , Ácidos Sulfúricos/química
18.
J Nanosci Nanotechnol ; 5(7): 1055-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16108427

RESUMO

In this paper we present a simple approach of nanodispersing single-walled carbon nanotubes (SWCNTs) in a non-polar 1,2-dichloroethane (DCE) solvent. After filtration with isopropanol and acetone, the purified SWCNTs were immersed in DCE, followed by sonication for about 15 hours. The samples were further centrifuged at 17,000 revolutions per minute for about 3 hours. Atomic force microscopy (AFM) demonstrated that the spin-coated nanotubes were mostly individual nanotubes with an average diameter of 1.6 nm and a length of about 250 nm. We also found that the presence of water, and the dry process during DCE treatment, prevented nanotubes from being nanodispersed.


Assuntos
Dicloretos de Etileno/química , Nanotubos de Carbono/ultraestrutura , 2-Propanol/química , Acetona/química , Acetona/farmacologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanotecnologia , Nanotubos/química , Solventes , Sonicação , Análise Espectral Raman
19.
J Colloid Interface Sci ; 446: 208-12, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25668782

RESUMO

Nanoporous carbons, with different micropore size distributions, were prepared based on waste coffee grounds by a chemical activation process in order to elucidate the correlation between desolvated ions and pores smaller than the sizes of ions using an organic electrolyte. The pore structure of the coffee-based nanoporous carbon was strongly dependent on the heat-treatment temperature prior to the activation process. Cyclic voltammograms of the nanoporous carbons mainly dominated by the smaller pore relative to that of the bare ion size clearly showed deviation from an ideal feature of the current response. It was clearly envisaged that even a bare ion of a size larger than the pore size can penetrate into the pore by voltage-induced force.

20.
J Colloid Interface Sci ; 255(2): 236-40, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12505068

RESUMO

The effects of nitrogen-doping on adsorption properties of activated carbon fibers (ACFs) for NO were investigated. The nitrogen-doped ACFs (N-ACFs) were prepared by chemical vapor deposition (CVD) of pyridine at 1023 K for various times. The N-ACFs were characterized by N(2) adsorption at 77 K, elemental analysis, and X-ray photoelectron spectroscopy (XPS). The nitrogen content increases with the pyridine-CVD time. An XPS examination showed that the fraction of quaternary nitrogen in the nitrogen structures is almost constant, regardless of the CVD times. However, quaternary nitrogen increases remarkably from 54% to 78% after heat-treatment of N-ACF at 1273 K, although the total nitrogen content decreases. The adsorption properties of N-ACFs for NO were examined at 303 K. The NO adsorption capacity of N-ACFs increases with the concentration of doped nitrogen. The NO adsorptivity of the N-ACF was remarkably enhanced by the heat-treatment at 1273 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA