Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Exp Bot ; 73(11): 3726-3742, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35182426

RESUMO

Anthocyanin accumulation is a hallmark response to nitrogen (N) deficiency in Arabidopsis. Although the regulation of anthocyanin biosynthesis has been extensively studied, the roles of chromatin modification in this process are largely unknown. In this study we show that anthocyanin accumulation induced by N deficiency is modulated by HISTONE DEACETYLASE15 (HDA15) in Arabidopsis seedlings. The hda15-1 T-DNA insertion mutant accumulated more anthocyanins than the wild-type when the N supply was limited, and this was caused by up-regulation of anthocyanin biosynthetic and regulatory genes in the mutant. The up-regulated genes also had increased levels of histone acetylation in the mutant. The accumulation of anthocyanins induced by sucrose and methyl jasmonate, but not that induced by H2O2 and phosphate starvation, was also greater in the hda15-1 mutant. While sucrose increased histone acetylation in the hda15-1 mutant in genes in a similar manner to that caused by N deficiency, methyl jasmonate only enhanced histone acetylation in the genes involved in anthocyanin biosynthesis. Our results suggest that different stresses act through distinct regulatory modules to activate anthocyanin biosynthesis, and that HDA15-mediated histone modification modulates the expression of anthocyanin biosynthetic and regulatory genes to avoid overaccumulation in response to N deficiency and other stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Sacarose/metabolismo
2.
Neurochem Res ; 44(6): 1399-1409, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30603982

RESUMO

Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and other mammals. The disease transmission can occur between different species but is limited by the sequence homology between host and inoculum. The crucial molecular event in the progression of this disease is prion formation, starting from the conformational conversion of the normal, membrane-anchored prion protein (PrPC) into the misfolded, ß-sheet-rich and aggregation-prone isoform (PrPSc), which then self-associates into the infectious amyloid form called prion. Amyloid is the aggregate formed from one-dimensional protein association. As amyloid formation is a key hallmark in prion pathogenesis, studying which segments in prion protein are involved in the amyloid formation can provide molecular details in the cross-species transmission barrier of prion diseases. However, due to the difficulties of studying protein aggregates, very limited knowledge about prion structure or prion formation was disclosed by now. In this study, cross-seeding assay was used to identify the segments involved in the amyloid fibril formation of full-length hamster prion protein, SHaPrP(23-231). Our results showed that the residues in the segments 108-127, 172-194 (helix 2 in PrPC) and 200-227 (helix 3 in PrPC) are in the amyloid core of hamster prion fibrils. The segment 127-143, but not 107-126 (which corresponds to hamster sequence 108-127), was previously reported to be involved in the amyloid core of full-length mouse prion fibrils. Our results indicate that hamster prion protein and mouse prion protein use different segments to form the amyloid core in amyloidogenesis. The sequence-dependent core formation can be used to explain the seeding barrier between mouse and hamster.


Assuntos
Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Animais , Cricetinae , Camundongos , Multimerização Proteica
3.
Plant Mol Biol ; 90(1-2): 127-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26520834

RESUMO

Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.


Assuntos
Frutose/metabolismo , Glucosiltransferases/metabolismo , Modelos Moleculares , Oryza/enzimologia , Sacarose/metabolismo , Difosfato de Uridina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes , Alinhamento de Sequência , Especificidade por Substrato , Uridina Difosfato Glucose/metabolismo
4.
Plant Mol Biol ; 88(4-5): 459-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26048037

RESUMO

Inducer of CBF expression 1 (ICE1) mediates the cold stress signal via an abscisic acid (ABA)-independent pathway. A possible role of ICE1 in ABA-dependent pathways was examined in this study. Seedling growth was severely reduced in a T-DNA insertion mutant of ICE1, ice1-2, when grown on 1/2 MS medium lacking sugars, but was restored to wild-type (WT) levels by supplementation with 56 mM glucose. In addition to this sugar-dependent phenotype, germination and establishment of ice1-2 were more sensitive to high glucose concentrations than in the WT. Hypersensitivity to ABA was also observed in ice1-2, suggesting its sensitivity to glucose might be mediated through the ABA signaling pathway. Glucose and ABA induced much higher expression of two genes related to ABA signal transduction, ABA-INSENSITIVE 3 (ABI3) and ABA-INSENSITIVE 4 (ABI4), in ice1-2 than in the WT during establishment. In summary, in addition to its known roles in regulating cold responses, stomatal development, and endosperm breakdown, ICE1 is a negative regulator of ABA-dependent responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Germinação , Glucose/metabolismo , Mutagênese Insercional , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
5.
Food Chem ; 400: 134001, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084586

RESUMO

Flavonoids are associated with health benefits, but most of them have poor oral bioavailability due to their extremely low aqueous solubility. Flavonoid O-phosphorylation suggests a potent modification to solve the problems. Here, we isolated, identified and characterized an unprecedented phosphotransferase, flavonoid phosphate synthetase (BsFPS), from B. subtilis. The enzyme catalyzes the ATP-dependent phosphorylation of flavonoid to generate flavonoid monophosphates, AMP and orthophosphate. BsFPS is a promiscuous phosphotransferase that efficiently catalyzes structurally-diverse flavonoids, including isoflavones, flavones, flavonols, flavanones and flavonolignans. Based on MS and NMR analysis, the phosphorylation mainly occurs on the hydroxyl group at C-7 of A-ring or C-4' of B-ring in flavonoid skeleton. Notably, BsFPS is regioselective for the ortho-3',4'-dihydroxy moiety of catechol-containing structures, such as luteolin and quercetin, to produce phosphate conjugates at C-4' or C-3' of B-ring. Our findings highlight the potential for developing biosynthetic platform to obtain new phosphorylated flavonoids for pharmaceutical and nutraceutical applications.


Assuntos
Flavanonas , Flavonas , Flavonolignanos , Isoflavonas , Monofosfato de Adenosina , Trifosfato de Adenosina , Bacillus subtilis , Catecóis , Flavonoides/química , Ligases , Luteolina , Fosfatos , Fosfotransferases , Quercetina
6.
Physiol Plant ; 143(3): 219-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21834856

RESUMO

The rice sucrose synthase 1 (RSus1) gene is transcriptionally induced by sucrose, and a region within its promoter, at -1117 to -958 upstream of the transcription initiation site, was found to be essential for enhancing the sucrose-induced expression. Further dissection of this region revealed that a group of nuclear proteins interact with a 39-bp fragment named A-3-2 (-1045 to -1007). A protein that specifically and directly interacted with A-3-2 was isolated from the suspension-cultured cells of rice and was subsequently identified as a purine-rich DNA-binding protein. The amino acid sequence of this protein, OsPurα, exhibited 73% identity with the Arabidopsis Purα-1 protein, and its modeled structure resembled the structure of Pur-α in Drosophila. Recombinant OsPurα expressed and purified from Escherichia coli was demonstrated to have DNA-binding activity and to interact with A-3-2 specifically. Moreover, OsPurα was able to enhance sucrose-induced expression of the ß-glucuronidase (GUS) reporter gene, which was transcriptionally fused to two copies of a DNA fragment containing A-3-2 and the cauliflower mosaic virus 35S minimal promoter, in vivo. The level of OsPurα bound to A-3-2 was higher in cells cultured in the presence of sucrose; however, the level of OsPurα mRNA in cells was not affected by sucrose. The results of this study demonstrate that OsPurα participates in the regulation of RSus1 expression in response to sucrose; nevertheless, it may require other partner proteins for full function.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Glucosiltransferases/biossíntese , Glucuronidase/biossíntese , Glucuronidase/genética , Dados de Sequência Molecular , Estrutura Molecular , Oryza/enzimologia , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de Proteína , Sacarose/metabolismo
7.
Mol Biol Rep ; 38(1): 283-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20354908

RESUMO

Phenylalanine ammonia-lyase is the first enzyme of general phenylpropanoid pathway. A PAL gene, designated as BoPAL1, was cloned from a Bambusa oldhamii cDNA library. The open reading frame of BoPAL1 was 2,139 bp in size and predicted to encode a 712-amino acid polypeptide. BoPAL1 was the first intronless PAL gene found in angiosperm plant. Several putative cis-acting elements such as P box, GT-1motif, and SOLIPs involved in light responsiveness were found in the 5'-flanking sequence of BoPAL1 which was obtained by TAIL-PCR method. Recombinant BoPAL1 protein expressed in Pichia pastoris was active. The optimum temperature and pH for BoPAL1 activity was 50°C and 9.0, respectively. The molecular mass of recombinant BoPAL1 was estimated as 323 kDa using gel filtration chromatography and the molecular mass of full-length BoPAL was about 80 kDa, indicating that BoPAL1 presents as a homotetramer. The Km and kcat values of BoPAL1 for L-Phe were 1.01 mM and 10.11 s(-1), respectively. The recombinant protein had similar biochemical properties with PALs reported in other plants.


Assuntos
Bambusa/enzimologia , Bambusa/genética , Genes de Plantas/genética , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Região 5'-Flanqueadora/genética , Sequência de Bases , Cromatografia de Afinidade , Clonagem Molecular , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fenilalanina Amônia-Liase/química , Pichia/metabolismo , Proteínas de Plantas/química , Proteínas Recombinantes/isolamento & purificação , Sequências Reguladoras de Ácido Nucleico/genética , Especificidade da Espécie
8.
Front Plant Sci ; 12: 753217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659322

RESUMO

Plant diseases are important issues in agriculture, and the development of effective and environment-friendly means of disease control is crucial and highly desired. Antimicrobial peptides (AMPs) are known as potential alternatives to chemical pesticides because of their potent broad-spectrum antimicrobial activity and because they have no risk, or have only a low risk, of developing chemical-resistant pathogens. In this study, we designed a series of amphipathic helical peptides with different spatial distributions of positive charges and found that the peptides that had a special sequence pattern "BBHBBHHBBH" ("B" for basic residue and "H" for hydrophobic residue) displayed excellent bactericidal and fungicidal activities in a wide range of economically important plant pathogens. The peptides with higher helical propensity had lower antimicrobial activity. When we modified the peptides with a long acyl chain at their N-terminus, their plant protection effect improved. Our application of the fatty acyl-modified peptides on the leaves of tomato and Arabidopsis plants lessened the infection caused by Pectobacterium carotovorum subsp. carotovorum and Botrytis cinerea. Our study provides important insights on the development of more potent novel AMPs for plant protection.

9.
J Exp Bot ; 61(12): 3305-20, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20566565

RESUMO

Heptahelical protein 1 (HHP1) is a negative regulator in abscisic acid (ABA) and osmotic signalling in Arabidopsis. The physiological role of HHP1 was further investigated in this study using transgenic and knock-out plants. In HHP1::GUS transgenic mutants, GUS activity was found to be mainly expressed in the roots, vasculature, stomata, hydathodes, adhesion zones, and connection sites between septa and seeds, regions in which the regulation of turgor pressure is crucial. By measuring transpiration rate and stomatal closure, it was shown that the guard cells in the hhp1-1 mutant had a decreased sensitivity to drought and ABA stress compared with the WT or the c-hhp1-1 mutant, a complementation mutant of HHP1 expressing the HHP1 gene. The N-terminal fragment (amino acids 1-96) of HHP1 was found to interact with the transcription factor inducer of CBF expression-1 (ICE1) in yeast two-hybrid and bimolecular fluorescence complementation (BiFC) studies. The hhp1-1 mutant grown in soil showed hypersensitivity to cold stress with limited watering. The expression of two ICE1-regulated genes (CBF3 and MYB15) and several other cold stress-responsive genes (RD29A, KIN1, COR15A, and COR47) was less sensitive to cold stress in the hhp1-1 mutant than in the WT. These data suggest that HHP1 may function in the cross-talk between cold and osmotic signalling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Proteínas de Membrana/metabolismo , Osmose , Transdução de Sinais , Ácido Abscísico/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , RNA de Plantas/genética , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido , Água/fisiologia
10.
Protein Expr Purif ; 71(2): 224-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20064614

RESUMO

Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is the first committed enzyme of phenylpropanoid pathway. A PAL gene, designated as BoPAL2, was cloned from a Bambusa oldhamii cDNA library. The open reading frame of BoPAL2 was 2142bp in size encoding a 713-amino acid polypeptide. BoPAL2 was heterologous expressed in Escherichia coli and Pichia pastoris. The recombinant proteins were exhibited PAL and tyrosine ammonia-lyase activities. The recombinant BoPAL2 had a subunit mass of 80kDa and existed as a homotetramer. The optimum temperature and pH of BoPAL2 were 50-60 degrees C and 8.5-9.0, respectively. The K(m) and k(cat) values of BoPAL2 expressed in E. coli were 250microM and 10.12s(-1). The K(m) and k(cat) values of BoPAL2 expressed in P. pastoris were 331microM and 16.04s(-1). The recombinant proteins had similar biochemical properties and kinetic parameters with PALs reported in other plants.


Assuntos
Amônia-Liases/metabolismo , Bambusa/genética , Escherichia coli/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Pichia/metabolismo , Amônia-Liases/química , Amônia-Liases/genética , Bambusa/metabolismo , Escherichia coli/genética , Biblioteca Gênica , Fases de Leitura Aberta , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/genética , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Proteins ; 76(1): 213-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19137620

RESUMO

Previously, we disclosed that O-linked glycosylation of Ser-132 or Ser-135 could dramatically change the amyloidogenic property of the hamster prion peptide (sequence 108-144). This peptide, which corresponds to the flexible loop and the first beta-strand in the structure of the prion protein, is a random coil when it is initially dissolved in buffer, but amyloid fibrils are formed with time. Thus, it offers a convenient model system to observe and compare how different chemical modifications and sequence mutations alter the amyloidogenic property of the peptide within a reasonable experimental time frame. In our earlier study, aside from uncovering a site-specificity of the glycosylation on the fibrillogenesis, different effects of alpha-GalNAc and beta-GlcNAc were observed. In this work, we explore further how different sugar configurations affect the conformational property of the polypeptide chain. We compare the effects of O-linked glycosylation by the common sugars alpha-GalNAc, beta-GlcNAc with their non-native analogs beta-GalNAc, alpha-GlcNAc in an effort to uncover the origin of the sugar-specificity on the fibril formation. We find that the anomeric configuration of the sugar is the most important factor affecting the fibrillogenesis. Sugars with the glycosidic bond in the alpha-configuration at Ser-135 have a dramatic inhibitory effect on the structural conversion of the glycosylated peptide. Because O-glycosylation of Ser-135 with alpha-linked sugars also promote the formation of three slowly converting conformations at the site of glycosylation, we surmise that the amyloidogenic property of the peptide is related to its conformational flexibility, and the proclivity of this region of the peptide to undergo the structural conversion from the random coil to form the beta-structure. Upon O-glycosylation with an alpha-linked sugar, this conversion is inhibited and the nucleation of fibril formation is largely retarded. Consistent with this scenario, Arg-136 is the residue most affected in the TOCSY NMR spectra of the glycosylated peptides, other than the serine site modified. In addition, when Arg-136 is substituted by Gly, a mutation that should provide higher structural flexibility in this part of the peptide, the amyloidogenic property of the peptide is greatly enhanced, and the inhibition effect of glycosylation is largely diminished. These results are consistent with Ser-135 and Arg-136 being part of the kink region involved in the structural conversion.


Assuntos
Glucosamina/química , Peptídeos/química , Príons/química , Príons/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Glucosamina/metabolismo , Glicosilação , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/síntese química , Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína
12.
J Exp Bot ; 60(6): 1589-604, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19286917

RESUMO

HHP1 (heptahelical protein 1), a protein with a predicted seven transmembrane domain structure homologous to adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs), has been characterized. Expression of HHP1 was increased in response to abscisic acid (ABA) and salt/osmotic stress as shown by quantitative real-time PCR and HHP1 promoter-controlled GUS activity. The HHP1 T-DNA insertion mutant (hhp1-1) showed a higher sensitivity to ABA and osmotic stress than the wild-type (WT), as revealed by the germination rate and post-germination growth rate. The induced expression of stress-responsive genes (RD29A, RD29B, ADH1, KIN1, COR15A, and COR47) was more sensitive to exogenous ABA and osmotic stress in hhp1-1 than in the WT. The hypersensitivity in the hhp1-1 mutant was reversed in the complementation mutant of HHP1 expressing the HHP1 gene. The data suggest that the mutation of HHP1 renders plants hypersensitive to ABA and osmotic stress and HHP1 might be a negative regulator in ABA and osmotic signalling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Osmose , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Mutação , Pressão Osmótica , Transdução de Sinais , Cloreto de Sódio/metabolismo
13.
Phytochemistry ; 70(1): 25-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19010503

RESUMO

Plant acid invertases, which are either associated with the cell wall or present in vacuoles, belong to family 32 of glycoside hydrolases (GH32). Homology modeling of bamboo vacuolar invertase Bobetafruct3 using Arabidopsis cell-wall invertase AtcwINV1 as a template showed that its overall structure is similar to GH32 enzymes, and that the three highly conserved motifs, NDPNG, RDP and EC, are located in the active site. This study also used site-directed mutagenesis to examine the roles of the conserved amino acid residues in these three motifs, which include Asp135, Arg259, Asp260, Glu316 and Cys317, and a conserved Trp residue (Trp159) that resides between the NDPNG and RDP motifs. The mutants W159F, W159L, E316Q and C317A retained acid invertase activity, but no invertase activity was observed for the mutant E316A or mutants with changes at Asp135, Arg259, or Asp260. The apparent K(m) values of the four mutants with invertase activity were all higher than that of the wild-type enzyme. The mutants W159L and E316Q exhibited lower k(cat) values than the wild-type enzyme, but an increase in the k(cat) value was observed for the mutants W159F and C317A. The results of this study demonstrate that these residues have individual functions in catalyzing sucrose hydrolysis.


Assuntos
Poaceae/enzimologia , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/metabolismo , Conformação Proteica
14.
J Food Drug Anal ; 27(1): 295-304, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648583

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) is a nuclear hormone receptor that transcriptionally regulates lipid metabolism and inflammation; therefore, PPARα agonists are promising agents to treat dyslipidemia and metabolic disorders. PPARα full agonists, such as fibrates, are effective anti-hypertriglyceride agents, but their use is limited by adverse side effects. Hence, the aim of this study was to identify small molecules that can activate PPARα while minimizing the adverse effects. Antrodia cinnamomea, a rare medical mushroom, has been used widely in Asian countries for the treatment of various diseases, including liver diseases. Antcin B, H and K (antcins) and ergostatrien-3ß-ol (EK100) are bioactive compounds isolated from A. cinnamomea with anti-inflammatory actions. Antcins, ergostane-type triterpenoids, contain the polar head with carboxylate group and the sterol-based body. Here, we showed at the first time that sterol-based compounds, antcins, but not EK100, activate PPARα in a cell-based transactivation study. The in silico docking studies presented several significant molecular interactions of antcins, including Tyr314, and His440 in the ligand-binding domain of PPARα, and these interactions are required for helix 12 (H12) stabilization. We propose that PPARα activation activity of antcins is related to their binding mode which requires conventional H12 stabilization, and that antcins can be developed as safe selective PPARα modulators.


Assuntos
Antrodia/química , Colestenos/química , Colestenonas/química , Ergosterol/análogos & derivados , PPAR alfa/agonistas , Extratos Vegetais/química , Triterpenos/química , Ergosterol/química , Humanos , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR alfa/metabolismo
15.
RSC Adv ; 8(7): 3453-3461, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35542922

RESUMO

Carbon nanotubes (CNTs) possesses decent optical properties and thus can be considered as a candidate for perfect absorbers due to their close-to-air refractive index and minimal extinction. However, weak absorption in porous materials, due to the low extinction coefficients, requires an inevitably thick absorption layer (∼100 µm) for the perfect opaque absorbers. Thus, the requirement of large thicknesses of CNTs prohibits them from being used as miniaturized integrated photonic devices. Here, we propose an electrophoretic deposited (EPD) CNT resonant cavity structure on tantalum (Ta) to enhance optical absorption. Efficient random light scattering along with the resonant cavity structure using Ti/SiO2 stacking enhances the absorption in our proposed EPD-CNT film while maintaining the total device thickness to <1 µm. The experiment results reveal that the absorption band covers the entire UV-VIS-NIR spectrum (λ = 0.3-2.6 µm), using resonant-cavity EPD-CNT design. The EPD deposition process is done at relatively low temperature < 120 °C. We believe that this proposal is very promising for sensing, antenna, and thermophotovoltaics (TPV), in terms of bandwidth, compactness and cost.

16.
Sci Total Environ ; 386(1-3): 124-33, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17610937

RESUMO

This study determined the effects of environmental tobacco smoke (ETS) on fetal growth by measuring neonatal birth outcomes and the extent of maternal DNA damage, and investigating the relationships among gene polymorphisms, genotoxicity, and pregnancy outcomes of expectant mothers who had exposed to tobacco smoke. This prospective study enrolled 685 pregnant women who completed an initial questionnaire at three central Taiwan hospitals between 2003 and 2004. Genotype analyses of CYP1A1, GSTT1, GSTM1, and NAT2 were performed from 421 women. A total of 398 women completed the follow-up analysis and successfully delivered a live single baby (n=384). Comet assay was performed for 18 smokers, 143 ETS-exposed subjects and 130 non-smokers to measure DNA damage. Analytical findings indicated that the levels of DNA damage among smokers and ETS-exposed subjects were significantly higher than that of non-smokers. DNA damage score in the ETS-exposed group was 84.3+/-44.3 and 63.5+/35.0 [corrected] for the nonsmoking group (p<0.001). Risk of DNA damage (DNA strand breakage, sister chromatid exchange, cell transformation and escalation of cytotoxicity) for subjects exposed to ETS was 7.49 times (adjusted odds ratio; 95% CI, 1.27-44.20) [corrected] greater than that of non-exposed to tobacco smoke at home. Average birth weight of neonates born to subjects with extremely serious DNA damage (within the 90th percentile, DNA damage score >or =129.5) was 141 g lighter than that of those with DNA damage score <129.5 (p=0.068) [corrected] The degree of DNA lesion was not related to metabolic polymorphic genes. The results of this study suggest that comet assay are reliable biomarkers for monitoring pregnant women exposed to tobacco smoke and indicate fetal growth effects from environmental exposure to tobacco smoke.


Assuntos
Peso ao Nascer/efeitos dos fármacos , Dano ao DNA , Exposição Ambiental , Poluentes Ambientais/efeitos adversos , Predisposição Genética para Doença , Poluição por Fumaça de Tabaco/efeitos adversos , Tabagismo/genética , Adulto , Aberrações Cromossômicas , Ensaio Cometa , Enzimas/sangue , Enzimas/genética , Feminino , Genótipo , Humanos , Recém-Nascido , Polimorfismo Genético , Gravidez , Resultado da Gravidez , Estudos Prospectivos , Fumar/efeitos adversos , Inquéritos e Questionários , Tabagismo/etiologia
17.
PLoS One ; 8(12): e82675, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340051

RESUMO

Phytochelatin synthase (PCS) uses the substrates glutathione (GSH, γGlu-Cys-Gly) and a cadmium (Cd)-bound GSH (Cd∙GS2) to produce the shortest phytochelatin product (PC2, (γGlu-Cys)2-Gly) through a ping-pong mechanism. The binding of the 2 substrates to the active site, particularly the second substrate binding site, is not well-understood. In this study, we generated a structural model of the catalytic domain of Arabidopsis AtPCS1 (residues 12-218) by using the crystal structure of the γGlu-Cys acyl-enzyme complex of the PCS of the cyanobacterium Nostoc (NsPCS) as a template. The modeled AtPCS1 revealed a cavity in proximity to the first substrate binding site, consisting of 3 loops containing several conserved amino acids including Arg152, Lys185, and Tyr55. Substitutions of these amino acids (R152K, K185R, or double mutation) resulted in the abrogation of enzyme activity, indicating that the arrangement of these 2 positive charges is crucial for the binding of the second substrate. Recombinant AtPCS1s with mutations at Tyr55 showed lower catalytic activities because of reduced affinity (3-fold for Y55W) for the Cd∙GS2, further suggesting the role of the cation-π interaction in recognition of the second substrate. Our study results indicate the mechanism for second substrate recognition in PCS. The integrated catalytic mechanism of PCS is further discussed.


Assuntos
Aminoaciltransferases/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Aminoaciltransferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Nostoc/enzimologia , Nostoc/genética , Estrutura Secundária de Proteína
18.
PLoS One ; 8(7): e67967, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844138

RESUMO

The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrP(C)) into its disease-causing isoform, PrP(Sc). This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high ß-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23-230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107-143), mPrP(107-126), and mPrP(127-143). Our results showed that the amyloid fibrils formed from mPrP(107-143) and mPrP(127-143), but not those formed from mPrP(107-126), were able to seed the amyloidogenesis of mPrP(23-230), showing that the segment residing in sequence 127-143 was used to form the amyloid core in the fibrillization of mPrP(23-230).


Assuntos
Amiloide/química , Fragmentos de Peptídeos/química , Príons/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Animais , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Priônicas , Príons/genética , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
19.
Plant Physiol Biochem ; 63: 217-26, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23291655

RESUMO

Bamboos are ecologically and economically important grasses, and are distinguished by their rapid growth. To identify genes associated with bamboo growth, PCR-based mRNA differential display was used to clone genes that were differentially expressed in various tissues of bamboo (Bambusa oldhamii) shoots at different growth stages. In total, 260 different cDNA sequences were obtained. These genes displayed complex expression profiles across the different tissues and growth stages as revealed by a cDNA microarray analysis. Notable among them were genes that were temporally up-regulated or down-regulated in the internode-containing region of rapidly elongating shoots. These genes might participate in the rapid elongation of the bamboo culm. Of the 36 up-regulated and 46 down-regulated genes, 16 genes and 8 genes, respectively, were predicted to encode hypothetical proteins or were unknown sequences. Aside from these, genes involved in hormonal signaling and homeostasis, stress responses, peptide processing and signaling and lignin biosynthesis composed most of the up-regulated genes; genes involved in DNA replication, nucleic acid binding and signal transduction were highly represented among the down-regulated genes. These results suggested that genes associated with plant hormonal signaling and homeostasis, peptide signaling, reactive oxygen species signaling and homeostasis, several stress-related genes and a monocot-specific unknown gene, BoMSP41, play important roles in the elongation of bamboo internodes. Multiple signaling pathways might form a complex interconnected network that controls the rapid growth of this giant grass.


Assuntos
Bambusa/genética , DNA Complementar/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética
20.
Phytochemistry ; 78: 7-19, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22513011

RESUMO

AtMAPR5/MSBP1 and its homologs can be ubiquitinated in the absence of E3 ligase in in vitro ubiquitination assays. Ubiquitinated AtMAPR3, AtMAPR5/MSBP1, and AtMAPR2 were identified using LC-MS/MS. Analysis of trypsin-released signature peptides showed that this E3-independent ubiquitination of AtMAPR3, AtMAPR5/MSBP1, and AtMAPR2 was dominated by mono-ubiquitination at multiple sites. Unlike AtUBC8-type E2s, AtUBC36 was not able to transfer ubiquitin to AtMAPR2. The truncated mutants AtMAPR2Δ1-10, AtMAPR2Δ1-30, and AtMAPR2_1-73 could also be ubiquitinated. The presence of a ubiquitin-binding domain (UBD) allows proteins to be ubiquitinated independently of E3 ligases. However, AtMAPRs do not contain any known UBD. In vitro ubiquitination of AtMAPR2 observed in this study will be further studied in biochemical and physiological aspects.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Transporte/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Arabidopsis/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA