Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17054-17065, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870463

RESUMO

Developing new methods to engineer photobiocatalytic reactions is of utmost significance for artificial photosynthesis, but it remains a grand challenge due to the intrinsic incompatibility of biocatalysts with photocatalysts. In this work, photocatalysts and enzymes were spatially colocalized at Pickering droplet interfaces, where the reaction microenvironment and the spatial distance between two distinct catalysts were exquisitely regulated to achieve unprecedented photobiocatalytic cascade reactions. As proof of the concept, ultrathin graphitic carbon nitride nanosheets loaded with Au nanoparticles were precisely positioned in the outer interfacial layer of Pickering oil droplets to produce H2O2 under light irradiation, while enzymes were exactly placed in the inner interfacial layer to catalyze the subsequent biocatalytic oxidation reactions using in situ formed H2O2 as an oxidant. In the alkene epoxidation and thioether oxidation, our interfacial photobiocatalytic cascades showed a 2.0-5.8-fold higher overall reaction efficiency than the photobiocatalytic cascades in the bulk water phase. It was demonstrated that spatial localization of the photocatalyst and the enzyme at Pickering oil droplet interfaces not only provided their respective preferable reaction environments and intimate proximity for rapid H2O2 transport but also protected the enzyme from oxidative inactivation caused by the photogenerated species. These remarkable interfacial effects contributed to the significantly enhanced photobiocatalytic cascading efficiency. Our work presents an innovative photobiocatalytic reaction system with manifold benefits, providing a cutting-edge platform for solar-driven chemical transformations via photobiocatalysis.

2.
Angew Chem Int Ed Engl ; 63(13): e202314650, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38296796

RESUMO

Exploiting advanced amphiphilic solid catalysts is crucial to the development of Pickering emulsion catalysis. Herein, covalent organic framework (COF) nanoparticles constructed with highly hydrophobic monomers as linkers were found to show superior amphiphilicity and they were then developed as a new class of solid emulsifiers for Pickering emulsion catalysis. Employing amphiphilic COFs as solid emulsifiers, Pickering emulsions with controllable emulsion type and droplet sizes were obtained. COF materials have also been demonstrated to serve as porous surface coatings to replace traditional surface modifications for stabilizing Pickering emulsions. After implanting Pd nanoparticles into amphiphilic COFs, the obtained catalyst displayed a 3.9 times higher catalytic efficiency than traditional amphiphilic solid catalysts with surface modifications in the biphasic oxidation reaction of alcohols. Such an enhanced activity was resulted from the high surface area and regular porous structure of COFs. More importantly, because of their tunable pore diameters, Pickering emulsion catalysis with remarkable size selectivity was achieved. This work is the first example that COFs were applied in Pickering emulsion catalysis, providing a platform for exploring new frontiers of Pickering emulsion catalysis.

3.
J Am Chem Soc ; 145(37): 20319-20327, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676729

RESUMO

The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.

4.
J Am Chem Soc ; 145(4): 2511-2522, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652392

RESUMO

Exploration of new methodologies to tune catalytic selectivity is a long-sought goal in catalytic community. In this work, oil-water interfaces of Pickering emulsions are developed to effectively regulate catalytic selectivity of hydrogenation reactions, which was achieved via a precise control of the spatial distribution of metal nanoparticles at the droplet interfaces. It was found that Pd nanoparticles located in the inner interfacial layer of Pickering droplets exhibited a significantly enhanced selectivity for p-chloroaniline (up to 99.6%) in the hydrogenation of p-chloronitrobenzene in comparison to those in the outer interfacial layer (63.6%) in pure water (68.5%) or in pure organic solvents (46.8%). Experimental and theoretical investigations indicated that such a remarkable interfacial microregion-dependent catalytic selectivity was attributed to the microenvironments of the coexistence of water and organic solvent at the droplet interfaces, which could provide unique interfacial hydrogen-bonding interactions and solvation effects so as to alter the adsorption patterns of p-chloronitrobenzene and p-chloroaniline on the Pd nanoparticles, thereby avoiding the unwanted contact of C-Cl bonds with the metal surfaces. Our strategy of precise spatial control of catalysts at liquid-liquid interfaces and the unprecedented interfacial effect reported here not only provide new insights into the liquid-liquid interfacial reactions but also open an avenue to boost catalytic selectivity.

5.
Small ; 19(10): e2206437, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564366

RESUMO

The desire for exploration of cellular functional mechanisms has substantially increased the rapid development of artificial cells. However, the construction of synthetic cells with high organizational complexity remains challenging due to the lack of facile approaches ensuring dynamic multi-compartments of cytoplasm and stability of membranes in protocells. Herein, a stable coacervate-in-Pickering emulsion protocell model comprising a membraneless coacervate phase formed by poly-l-lysine (PLys) and adenosine triphosphate (ATP) encapsulated in Pickering emulsion is put forward only through simple one-step emulsification. The dynamic distribution of intracellular components (coacervates in this protocell model) can be manipulated by changes in temperature or pH. This coacervate-in-Pickering emulsion protocell system exhibits repeatable cycle stability in response to external stimuli (at least 24 cycles for temperature and 3 cycles for pH). By encapsulating antagonistic enzymes into coacervates, glucose oxidase (GOx) and urease as an example, the control of local enzyme concentration is achieved by introducing glucose and urea to adjust the pH value in Pickering emulsion droplets. This hybrid protocell model with programmatically dynamic microcompartmentation and sufficient stability is expected to be further studied and applied in cellular biology, facilitating the development of lifelike systems with potential in practical applications.


Assuntos
Células Artificiais , Emulsões , Glucose Oxidase , Trifosfato de Adenosina , Urease
6.
Langmuir ; 39(16): 5621-5630, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058608

RESUMO

Multicompartmentalized microspheres with multilevel and complex interior structures have great potential in practical applications due to their cell-like structures and microscale dimension. The Pickering emulsion droplet-confined synthesis route has been demonstrated to be a promising strategy for fabricating multicompartmentalized microspheres. Since Pickering emulsion-templated formation of hollow microspheres is an interface-directed process in which the growth of shells occurs at the oil/water interface and the confined space of Pickering emulsion droplet accommodates a variety of behaviors, such as surfactant-guided assembly growth, confined pyrolysis transformation, tritemplated growth, and bottom-up assembly, the independent and free regulation of the interface and internal structure of microspheres is allowed. In this Perspective, we highlight the recent progress in the synthesis of microparticles with tunable interior structures via the Pickering emulsion droplet-based approach. And we delve into the innovative applications of these multilevel-structured microparticles benefiting from their biomimetic multicompartments. Finally, some fundamental challenges and opportunities are identified for regulating the interior structure within microspheres and promoting practical applications by virtue of the Pickering emulsion droplet-confined synthesis pathway.

7.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446581

RESUMO

The search for non-noble metal catalysts for chemical transformations is of paramount importance. In this study, an efficient non-noble metal catalyst for hydrogenation, hexagonal close-packed cobalt (HCP-Co), was synthesized through a simple one-step reduction of ß-Co(OH)2 nanosheets via a temperature-induced phase transition. The obtained HCP-Co exhibited several-times-higher catalytic efficiency than its face-centered cubic cobalt (FCC-Co) counterpart in the hydrogenation of the C=C/C=O group, especially for the 5-hydroxymethylfurfural (HMF) hydrogenation (8.5-fold enhancement). Density functional theory calculations demonstrated that HMF molecules were adsorbed more firmly on the (112_0) facet of HCP-Co than that on the (111) facet of FCC-Co, favoring the activation of the C=O group in the HMF molecule. The stronger adsorption on the (112_0) facet of HCP-Co also led to lower activation energy than that on the (111) facet of FCC-Co, thereby resulting in high activity and selectivity. Moreover, HCP-Co exhibited outstanding catalytic stability during the hydrogenation of HMF. These results highlight the possibility of fabricating hydrogenation catalysts with satisfactory catalytic properties by precisely tuning their active crystal phase.


Assuntos
Cobalto , Hidrogenação , Adsorção
8.
Angew Chem Int Ed Engl ; 62(15): e202300794, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790752

RESUMO

Developing biocatalytic cascades in abiological conditions is of utmost significance, but such processes often suffer from low reaction efficiency because of incompatible reaction environments and suppressed intermediate transportation. Herein we report a new type of biocatalytic cascade by localizing two different enzymes separately in the outer and inner interfacial layers of Pickering emulsion droplets. This versatile approach enables the localization of two enzymes in their preferred reaction microenvironments and simultaneously in nanoscale proximity of each other. The thus-designed interfacial biocatalytic cascades show outstanding catalytic efficiency in alkene epoxidation and thioether oxidation with in situ generation of hydrogen peroxide under mild conditions, 6.9-13.6 times higher than the catalytic efficiency of the free enzymes in solution and their multi-enzymatic counterparts. The remarkable interfacial effect of Pickering droplets was found to be responsible for the significantly enhanced cascading efficiency.

9.
Langmuir ; 38(30): 9421-9430, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849727

RESUMO

Multilevel porous architectures with microscopic shape control and tailor-made complex structures offer great potential for various innovative applications, but their elaborate design and synthesis have remained a scientific and technological challenge. Herein, we report a simple and effective tri-templating method, in which microscale Pickering droplets, nanoscale polystyrene colloids (PS), and molecular cetyltrimethylammonium chloride micelles are synchronously employed, for the fabrication of such micro-nanohierarchical mesoporous silica microspheres. In this protocol, Pickering droplet-directed interfacial sol-gel growth and its spatially confined surfactant assembly-directed sol-gel coating on PS suspensions are coupled together, enabling the successful formation of structured mesoporous silica that consists of numerous nanocompartments enclosed by a permeable shell. By varying the quantity of PS colloidal templates, rational regulation of the complex interior structure is achieved. Also, ascribed to the multilevel arrangement, this peculiar architecture not only shows desirable fast mass transport of external molecules but also possesses easy handling ability. After loading with tetraethylenepentamine or enzyme species, the yielded microspherical CO2 sorbents or immobilized biocatalysts, respectively, exhibit enhanced CO2 capture capacity and enzymatic catalysis efficiency. Notably, taking advantage of their microscopic characteristics, the immobilized biocatalysts could be ideally packed in a fixed-bed reactor for long-term continuous-flow enzymatic reactions. This tri-templating strategy provides a new synthetic route to access other multilevel microscopic materials with fascinating complex structures and paves a way to promote their practical applications.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Catálise , Enzimas Imobilizadas , Microesferas , Porosidade , Dióxido de Silício/química
10.
Angew Chem Int Ed Engl ; 61(45): e202211912, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111498

RESUMO

Co-immobilization of enzymes and cofactors in a manner suitable for use in continuous flow catalysis remains a great challenge because of the difficulty in ensuring the free accessibility of immobilized enzymes and cofactors. Herein, we present a continuous flow catalysis system based on co-compartmentalization of enzymes and cofactors within Pickering emulsion droplets, enabling regeneration of cofactors within the droplets. As exemplified by enzyme-catalyzed ketone enantioselective reduction and enantioselective transamination, our systems exhibit long-term stability (300-400 h), outstanding total turnover number (TTN, 59204 mol mol-1 ) and several-fold enhancement in the enzyme catalytic efficiency (CEe ) in comparison to conventional biphasic reactions. As well as giving insight into the co-compartmentalization effects, our system will provide the opportunity to significantly advance continuous-flow biocatalysis towards the level of practical applications.


Assuntos
Enzimas Imobilizadas , Emulsões , Catálise , Biocatálise
11.
J Am Chem Soc ; 143(40): 16641-16652, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606264

RESUMO

Enzymatic microarchitectures with spatially controlled reactivity, engineered molecular sieving ability, favorable interior environment, and industrial productivity show great potential in synthetic protocellular systems and practical biotechnology, but their construction remains a significant challenge. Here, we proposed a Pickering emulsion interface-directed synthesis method to fabricate such a microreactor, in which a robust and defect-free MOF layer was grown around silica emulsifier stabilized droplet surfaces. The compartmentalized interior droplets can provide a biomimetic microenvironment to host free enzymes, while the outer MOF layer secludes active species from the surroundings and endows the microreactor with size-selective permeability. Impressively, the thus-designed enzymatic microreactor exhibited excellent size selectivity and long-term stability, as demonstrated by a 1000 h continuous-flow reaction, while affording completely equal enantioselectivities to the free enzyme counterpart. Moreover, the catalytic efficiency of such enzymatic microreactors was conveniently regulated through engineering of the type or thickness of the outer MOF layer or interior environments for the enzymes, highlighting their superior customized specialties. This study provides new opportunities in designing MOF-based artificial cellular microreactors for practical applications.


Assuntos
Biocatálise
12.
Phys Chem Chem Phys ; 23(2): 785-805, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33399593

RESUMO

Deep eutectic solvents (DESs) have been intensively pursued in the field of separation processes, catalytic reactions, polymers, nanomaterial science, and sensing technologies due to their unique features such as the low cost of components, ease of preparation, tunable physicochemical properties, negligible vapor pressure, non-toxicity, renewability, and biodegradability in the recent decade. Considering these appealing merits, DESs are widely used as extraction agents, solvents and/or catalysts in the desulfurization process since 2013. This review is focused on summarizing the physicochemical properties of DESs (i.e., freezing point, density, viscosity, ionic conductivity, acidity, hydrophilicity/hydrophobicity, polarity, surface tension, and diffusion) to some extent, and their significant advances in applications related to desulfurization processes such as extraction desulfurization, extraction-oxidation desulfurization, and biomimetic desulfurization. In particular, we systematically compile very recent works concerning the selective aerobic oxidation desulfurization (AODS) under extremely mild conditions (60 °C and ambient pressure) via a biomimetic approach coupling DESs with polyoxometallates (POMs). In this system, DESs act as multifunctional roles such as extraction agents, solvents, and catalysts, while POMs serve as electron transfer mediators. This strategy is inspirational since biomimetic or bioinspired catalysis is the "Holy Grail" of oxidation catalysis, which overcomes the difficulty of O2 activation via introducing electron transfer mediators into this system. It not only can be used for AODS, but also paves a novel way for oxidation catalysis, such as the selective oxyfunctionalization of hydrocarbon. Eventually, the conclusion, current challenges, and future opportunities are discussed. The aim is to provide necessary guidance for precisely designing tailor-made DESs, and to inspire chemists to use DESs as a powerful platform in the field of catalysis science.

13.
Angew Chem Int Ed Engl ; 59(2): 637-641, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31670436

RESUMO

A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm, but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers.

14.
J Am Chem Soc ; 141(13): 5220-5230, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30776224

RESUMO

We describe a novel method to prepare a liquid-solid hybrid catalyst via interfacial growth of a porous silica crust around Pickering emulsion droplets, which allowed us to overcome the current limitations of both homogeneous and heterogeneous catalysts. The inner micron-scaled liquid (for example, ionic liquids) pool of the resultant catalyst can host free homogeneous molecular catalysts or enzymes to create a true homogeneous catalysis environment. The porous silica crust of the hybrid catalyst has excellent stability, which makes it amenable to packing directly in fixed-bed reactors for continuous flow catalysis. As a proof of concept, the enzymatic kinetic resolution of racemic alcohols, CrIII(salen) complex-catalyzed asymmetric ring opening of epoxides and Pd-catalyzed Tsuji-Trost allylic substitution reactions were used to verify the generality and versatility of our strategy for bridging homogeneous and heterogeneous catalysis. The hybrid catalyst-based continuous flow system exhibited a 1.6∼16-fold enhancement in activity relative to homogeneous counterparts even over 1500 h, and the afforded enantioselectivities were completely equal to those obtained in the homogeneous counterpart systems. Interestingly, the catalytic efficiency can be tuned through rational engineering of the porous crust and the dimensions of the liquid pool, resulting in features of an innovatively designed catalyst. This contribution provides a new method to design efficient catalysts that can bridge the conceptual and technical gaps between homogeneous and heterogeneous catalysis.

15.
Langmuir ; 34(23): 6922-6929, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29723467

RESUMO

We present the facile preparation of a superhydrophobic-oleophilic stainless steel mesh with excellent oil/water separation efficiency and resistance to corrosion through hydrofluoric (HF) acid etching, Ag nanoparticle coating, and stearic acid modification, to construct a superhydrophobic micro/nanohierarchical structure. The surface of the treated mesh exhibits superhydrophobicity, with a water contact angle of 152°, and superoleophilicity, with an oil contact angle of 0°. The effects of variation in the HF etching time and Ag nanoparticle coating on surface wettability were explored. The treated mesh demonstrated a very high separation efficiency, as high as 98% for the optimal preparation, on a series of oil/water mixtures. The durability of the treated mesh was tested by repeated separation of kerosene/water mixtures, with the separation efficiency remaining higher than 97% after 40 cycles. In addition, the mesh exhibited an excellent chemical resistance to both acidic and alkaline conditions, with good wearing in hot water. The improved superhydrophobic-oleophilic mesh represents a feasible and realistic oil/water separation methodology even under harsh conditions, and it could have wide application in industrial processes.

16.
Langmuir ; 34(34): 10135-10143, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30078324

RESUMO

Pickering emulsions are emulsions stabilized by solid particles located at surfaces/interfaces of liquid droplets that have promising applications for drug delivery and in nanomaterials synthesis. Direct observation of Pickering emulsions can be challenging. Normally, cryoelectron microscopy needs to be used to better understand these types of emulsion systems, but cryofreezing these emulsions may cause them to lose their original morphologies. In this work, we demonstrate that graphitic carbon nitride (g-C3N4) can stabilize oil-in-water (o/w) emulsions, with hexane illustrated as a typical oil phase. The g-C3N4-stabilized emulsions can act as an excellent platform for in situ study of emulsifying behavior from the mechanical point of view. Owing to its large lateral size and blue, stable fluorescence, the locations and motions of the g-C3N4 stabilizer can be finely in situ monitored by light microscopy, fluorescence microscopy, and confocal microscopy. Accordingly, we illustrate two stabilizing configurations of the g-C3N4 particles with respect to the emulsion droplets under static conditions. Further, we demonstrate the capability to manipulate emulsion droplets and investigate their response to external forces. We perform real-time observations of the g-C3N4 particles and the emulsion droplets that move in the continuous phase and study their adsorption kinetics toward each other. Finally, the π-π interaction between the stabilizer and aromatic liquid phase (e.g., toluene) is considered and studied as an influencing factor on emulsifying behavior.

17.
Angew Chem Int Ed Engl ; 57(34): 10899-10904, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29962066

RESUMO

Large-sized carbon spheres with controllable interior architecture are highly desired, but there is no method to synthesize these materials. Here, we develop a novel method to synthesize interior-structured mesoporous carbon microspheres (MCMs), based on the surfactant assembly within water droplet-confined spaces. Our approach is shown to access a library of unprecedented MCMs such as hollow MCMs, multi-chambered MCMs, bijel-structured MCMs, multi-cored MCMs, "solid" MCMs, and honeycombed MCMs. These novel structures, unattainable for the conventional bulk synthesis even at the same conditions, suggest an intriguing effect arising from the droplet-confined spaces. This synthesis method and the hitherto unfound impact of the droplet-confined spaces on the microstructural evolution open up new horizons in exploring novel materials for innovative applications.

18.
Angew Chem Int Ed Engl ; 57(45): 14857-14861, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30230147

RESUMO

Direct hydrogenation of C=C double bonds is a basic transformation in organic chemistry which is vanishing from simple practice because of the need for pressurized hydrogen. Ammonia borane (AB) has emerged as a hydrogen source through its safety and high hydrogen content. However, in conventional systems the hydrogen liberated from the high-cost AB cannot be fully utilized. Herein, we develop a novel Pd/g-C3 N4 stabilized Pickering emulsion microreactor, in which alkenes are hydrogenated in the oil phase with hydrogen originating from AB in the water phase, catalysed by the Pd nanoparticles at the interfaces. This approach is advantageous for more economical hydrogen utilization over conventional systems. The emulsion microreactor can be applied to a range of alkene substrates, with the conversion rates achieving >95 % by a simple modification.

19.
J Am Chem Soc ; 139(48): 17387-17396, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29099180

RESUMO

We develop a novel strategy to more effectively and controllably process continuous enzymatic or homogeneous catalysis reactions based on nonaqueous Pickering emulsions. A key element of this strategy is "bottom-up" construction of a macroscale continuous flow reaction system through packing catalyst-containing micron-sized ionic liquid (IL) droplet in oil in a column reactor. Due to the continuous influx of reactants into the droplet microreactors and the continuous release of products from the droplet microreactors, catalysis reactions in such a system can take place without limitations arising from establishment of the reaction equilibrium and catalyst separation, inherent in conventional batch reactions. As proof of the concept, enzymatic enantioselective trans-esterification and CuI-catalyzed cycloaddition reactions using this IL droplet-based flow system both exhibit 8 to 25-fold enhancement in catalysis efficiency compared to their batch counterparts, and a durability of at least 4000 h for the enantioselective trans-esterification of 1-phenylethyl alcohol, otherwise unattainable in their batch counterparts. We further establish a theoretical model for such a catalysis system working under nonequilibrium conditions, which not only supports the experimental results but also helps to predict reaction progress at a microscale level. Being operationally simple, efficient, and adaptive, this strategy provides an unprecedented platform for practical applications of enzymes and homogeneous catalysts even at a controllable level.

20.
Langmuir ; 33(36): 9025-9033, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28803476

RESUMO

We develop a novel protocol to prepare smart, gas/water interface-active, mesoporous silica particles. This protocol involves modification of highly mesoporous silicas with a mixture of hydrophobic octyl organosilane and hydrophilic triamine organosilane. Their structure and compositions are characterized by transmission electron microscopy (TEM), N2 sorption, solid state NMR, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TGA), and elemental analysis. It is demonstrated that our protocol enables the interface activity of mesoporous silica particles to be facilely tuned, so that the stable gas-water interfaces ranging from air bubbles dispersed in water (Pickering foam) and water droplets dispersed in air ("dry water") can be achieved, depending on the molar ratio of these two organosilanes. The "dry water" is not otherwise attainable for the analogous nonporous silica particles, indicting the uniqueness of the chosen mesoporous structures. Moreover, these particle-stabilized Pickering foams and "dry waters" can be disassembled in response to pH. Interestingly, it was found that aqueous potassium carbonate droplets stabilized by these interface-active mesoporous silica particles ("dry K2CO3-containing water") could automatically capture CO2 from a simulated flue gas with enhanced adsorption rate and adsorption capacity when compared to the aqueous potassium carbonate bulk solution. This study not only supplies a novel type of efficient, smart, gas/water interface-active mesoporous silica particles but also demonstrates an innovative application of mesoporous materials in gas adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA