Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193350

RESUMO

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Assuntos
Lesão Pulmonar Aguda , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Necroptose , Transdução de Sinais
2.
Lab Invest ; 104(3): 100319, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158123

RESUMO

Effective inhibition of macrophage activation is critical for resolving inflammation and restoring pulmonary function in patients with chronic obstructive pulmonary disease (COPD). In this study, we identified the dual-enhanced cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) as a novel regulator of macrophage activation in COPD. Both COX-2 and sEH were found to be increased in patients and mice with COPD and in macrophages exposed to cigarette smoke extract. Pharmacological reduction of the COX-2 and sEH by 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) effectively prevented macrophage activation, downregulated inflammation-related genes, and reduced lung injury, thereby improving respiratory function in a mouse model of COPD induced by cigarette smoke and lipopolysaccharide. Mechanistically, enhanced COX-2/sEH triggered the activation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, leading to the cleavage of pro-IL-1ß into its active form in macrophages and amplifying inflammatory responses. These findings demonstrate that targeting COX-2/sEH-mediated macrophage activation may be a promising therapeutic strategy for COPD. Importantly, our data support the potential use of the dual COX-2 and sEH inhibitor PTUPB as a therapeutic drug for the treatment of COPD.


Assuntos
Ativação de Macrófagos , Doença Pulmonar Obstrutiva Crônica , Camundongos , Humanos , Animais , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Inflamassomos/metabolismo
3.
Lab Invest ; 104(2): 100307, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104865

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.


Assuntos
Mitocôndrias , Doença Pulmonar Obstrutiva Crônica , Humanos , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Envelhecimento , Mitofagia
4.
Mol Med ; 30(1): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898476

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Assuntos
Asma , Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto
5.
Anal Chem ; 96(10): 4154-4162, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426698

RESUMO

Metastasis is the leading cause of death in patients with breast cancer. Detecting high-risk breast cancer, including micrometastasis, at an early stage is vital for customizing the right and efficient therapies. In this study, we propose an enzyme-free isothermal cascade amplification-based DNA logic circuit in situ biomineralization nanosensor, HDNAzyme@ZIF-8, for simultaneous imaging of multidimensional biomarkers in live cells. Taking miR-21 and Ki-67 mRNA as the dual detection targets achieved sensitive logic operations and molecular recognition through the cascade hybridization chain reaction and DNAzyme. The HDNAzyme@ZIF-8 nanosensor has the ability to accurately differentiate breast cancer cells and their subtypes by comparing their relative fluorescence intensities. Of note, our nanosensor can also achieve visualization within breast cancer organoids, faithfully recapitulating the functional characteristics of parental tumor. Overall, the combination of these techniques offers a universal strategy for detecting cancers with high sensitivity and holds vast potential in clinical cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , DNA Catalítico , MicroRNAs , Humanos , Animais , Feminino , MicroRNAs/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , DNA , Organoides , Técnicas Biossensoriais/métodos
6.
Anal Chem ; 96(1): 355-363, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113399

RESUMO

Ferroptosis has been confirmed as a potential mediator and an indicator of the severity of liver injury. Despite the fruitful results, there are still two deficiencies in the research on the association between ferroptosis and liver injury. First, iron ions are usually selected as the target bioanalyte, but its detection based on a fluorescent probe is interfered with by specific chemical reaction mechanisms, leading to low sensitivity and poor physiological stability. Second, more efforts were focused on the harmful effects of ferroptosis on liver injury and less involved in the therapeutic value of ferroptosis for liver injury. Hence, in this work, we proposed a new nonreactive analyte (mitochondrial viscosity) as an analysis marker, which can circumvent the challenges caused by specific reaction mechanisms of iron ions. Meanwhile, we constructed a novel label-detection integrated visual probe (VPF) to explore the feasibility of ferroptosis in the treatment of liver injury. As expected, we not only successfully traced the dynamic changes in mitochondrial viscosity but also visualized the changes in cell morphology during induced and inhibited ferroptosis. Conspicuously, this work revealed that liver injury can be alleviated by regulating ferroptosis, confirming the therapeutic value of ferroptosis in liver injury. In addition, a complex biological communication network between ferroptosis and liver injury was constructed by western blotting, providing an important theoretical mechanism for revealing their double-edged sword relationship. This study not only provides a new strategy for studying the complex relationship between ferroptosis and liver injury but also facilitates the future treatment of liver injury.


Assuntos
Ferroptose , Western Blotting , Ferro , Fígado , Íons
7.
Opt Express ; 32(9): 15923-15935, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859231

RESUMO

A chip-scale chaotic laser system with optoelectronic delayed feedback is proposed and analyzed by numerical simulation. This chip eliminates the need for bulky delay components such as long optical fibers, free propagation and external cavities, relying solely on internal devices and waveguides to achieve feedback delay. This approach simplifies integration, maintaining a compact chip size. According to the results, the chip-scale system exhibits rich dynamics, including periodicity, quasi-periodicity, and chaotic states. Chaos resembling Gaussian white noise is achieved with picosecond-level delay time, highlighting the complexity of chip-scale signals. Furthermore, time delay signature (TDS) concealment is enhanced with a short delay comparable to the inverse bandwidth τ, albeit at a cost of sacrificing chaotic signal complexity. Applying the photonic integrated circuits to practical applications, 1 Gbps back-to-back communication transmission is feasible. Results demonstrate low bit error rates (BERs) for authorizers (<10-6) and high BERs for eavesdroppers (>10-2), ensuring communication confidentiality and chaotic synchronization. Lastly, preliminary experiments validate the feasibility. Our theoretical work has demonstrated the feasibility of hybrid integrated optical chaos circuits with optoelectronic feedback based on photonic wire bonding, which can provide a stable and flexible integrated chaos source.

8.
Bioorg Med Chem ; 103: 117684, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493731

RESUMO

Glioblastoma multiforme (GBM) is a prevalent primary brain tumor. However, no specific therapeutic drug has been developed for it. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor involved in the cellular response to oxidative stress. Numerous studies have demonstrated that Nrf2 plays a pivotal role in GBM angiogenesis, and inhibiting Nrf2 can significantly enhance patient prognosis. Using virtual screening technology, we examined our in-house library and identified pinosylvin as a potential compound with high activity. Pinosylvin exhibited robust hydrogen bond and Π-Π interaction with Nrf2. Cell experiments revealed that pinosylvin effectively reduced the proliferation of U87 tumor cells by regulating Nrf2 and demonstrated greater inhibitory activity than temozolomide. Consequently, we believe that this study will offer valuable guidance for the future development of highly efficient therapeutic drugs for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fitoalexinas , Estilbenos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Fator 2 Relacionado a NF-E2 , Linhagem Celular Tumoral , Temozolomida , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38430179

RESUMO

Background: With the development of endoscopic technology, the application of upper endoscopy can quickly target the lesion site of patients with peptic ulcer complicated with upper gastrointestinal bleeding. Objective: This study aims to discuss the clinical effect of octreotide combined with upper endoscopy in treating peptic ulcer complicated with upper gastrointestinal hemorrhage. Methods: A total of 82 patients diagnosed with peptic ulcer complicated with upper gastrointestinal hemorrhage were recruited as study objects in the researchers' hospital. According to the treatment method, this retrospective study divided the patients into a control group (n=41, receiving adrenaline injection under upper endoscopy only) and a treatment group (n=41, receiving adrenaline injection under upper endoscopy and Octreotide intravenously). Results: After treatment, the volume of blood loss, average hemostasis time, hospital stay, and time of occult blood turning negative in the treatment group were shorter than those in the control group (P < .05). After treatment, the clinical efficacy of the treatment group was better than that of the control group (P < .05). The levels of prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) levels in the treatment group were lower than those in the control group, with significant differences (P < .05). Conclusion and Relevance: Combining octreotide and upper endoscopy has affirmative efficacy and good hemostatic effect on treating peptic ulcer complicated with upper gastrointestinal hemorrhage with less pain and short recovery time, which is worthy of clinical application.

10.
J Craniofac Surg ; 35(4): 1241-1243, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727207

RESUMO

BACKGROUND: The submental artery perforator flap (SMAPF) is an alternative to reconstruct oral and maxillofacial defects secondary to oral cancers. However, vascular anomalies or surgical damage often lead to vascular crises or harvest failure. Our clinical findings suggest that the vena comitans of the facial artery (cFA) very commonly exist. This study aimed to investigate the reliability of the cFA as a sole venous reflux route for the SMAPF. METHOD: The patients were from the Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University. All patients were treated for oral cancer between January 2016 and September 2022. Seventeen SMAPFs were successfully raised to reconstruct the postoperative defects, of which 7 had cFA as the sole reflux route. RESULTS: The size of the flaps varied from 4.0×3.0 cm to 12.0×3.0 cm. All flaps survived. Patients were followed from 1 month to 5 years. Satisfactory restoration of contour and functional outcomes were achieved at the recipient sites. The scars were well camouflaged in the submental region. No local or regional recurrence was detected during follow-up. Patients had an overall 2-year survival rate of 100% with no suspected flaps-related recurrence. CONCLUSIONS: The cFA as the sole venous reflux route for SMAPF is reliable for flap harvesting and is applicable for immediate defect reconstruction secondary to cancer resection.


Assuntos
Face , Neoplasias Bucais , Retalho Perfurante , Procedimentos de Cirurgia Plástica , Humanos , Retalho Perfurante/irrigação sanguínea , Masculino , Feminino , Pessoa de Meia-Idade , Face/irrigação sanguínea , Face/cirurgia , Adulto , Neoplasias Bucais/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Idoso , Artérias/cirurgia , Resultado do Tratamento
11.
Nano Lett ; 23(19): 8881-8890, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751402

RESUMO

Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.

12.
J Transl Med ; 21(1): 179, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879273

RESUMO

BACKGROUND: Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages. The influence of TREM-1 on the destiny of macrophages in ALI requires further investigation. METHODS: TREM-1 decoy receptor LR12 was used to evaluate whether the TREM-1 activation induced necroptosis of macrophages in lipopolysaccharide (LPS)-induced ALI in mice. Then we used an agonist anti-TREM-1 Ab (Mab1187) to activate TREM-1 in vitro. Macrophages were treated with GSK872 (a RIPK3 inhibitor), Mdivi-1 (a DRP1 inhibitor), or Rapamycin (an mTOR inhibitor) to investigate whether TREM-1 could induce necroptosis in macrophages, and the mechanism of this process. RESULTS: We first observed that the blockade of TREM-1 attenuated alveolar macrophage (AlvMs) necroptosis in mice with LPS-induced ALI. In vitro, TREM-1 activation induced necroptosis of macrophages. mTOR has been previously linked to macrophage polarization and migration. We discovered that mTOR had a previously unrecognized function in modulating TREM-1-mediated mitochondrial fission, mitophagy, and necroptosis. Moreover, TREM-1 activation promoted DRP1Ser616 phosphorylation through mTOR signaling, which in turn caused surplus mitochondrial fission-mediated necroptosis of macrophages, consequently exacerbating ALI. CONCLUSION: In this study, we reported that TREM-1 acted as a necroptotic stimulus of AlvMs, fueling inflammation and aggravating ALI. We also provided compelling evidence suggesting that mTOR-dependent mitochondrial fission is the underpinning of TREM-1-triggered necroptosis and inflammation. Therefore, regulation of necroptosis by targeting TREM-1 may provide a new therapeutic target for ALI in the future.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Receptor Gatilho 1 Expresso em Células Mieloides , Lipopolissacarídeos/farmacologia , Dinâmica Mitocondrial , Necroptose , Serina-Treonina Quinases TOR , Macrófagos , Inflamação
13.
J Neurogenet ; 37(3): 93-102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37129498

RESUMO

A great amount of reaches have confirmed that circular RNAs (circRNAs) are novel regulators in glioma progression. Here, our work aimed to probe the specific role of circ_CLIP2 in glioma. The mRNA and protein expressions were analyzed by qRT-PCR and western blot, respectively. Cell viability, migration, invasion and apoptosis were examined by MTT assay, tranwell and flow cytometry assays, respectively. Moreover, the binding relationships between circ_CLIP2, microRNA (miR)-641 and erythropoietin-producing human hepatocellular (Eph)A3 were verified by dual luciferase reporter gene assay and/or RIP assay. The following data showed that circ_CLIP2 and EPHA3 were markedly increased in glioma tissues and cells, while miR-647 was downregulated. Gain- and loss-of-function experiments discovered that circ_CLIP2 knockdown remarkably inhibited cell proliferation, migration and invasion and promoted cell apoptosis of glioma cells, while these effects of circ_CLIP2 knockdown were abolished by miR-641 inhibition. Circ_CLIP2 was proved as a sponge of miR-641 to competitively upregulate EPHA3 expression. In addition, EPHA3 overexpression could abolish the inhibitory effects of miR-641 overexpression on the malignant behaviors of glioma cells by activating the signal transducer and activator of transcription 3 (STAT3). These findings elucidated that circ_CLIP2 knockdown suppressed glioma development by regulation of the miR-641/EP HA3/STAT3 axis, which provided a novel mechanism for understanding the pathogenesis of glioma.

14.
Am J Med Genet A ; 191(12): 2850-2855, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37571997

RESUMO

Oligomeganephronia (OMN) is a rare congenital renal hypoplasia reported more often in children than in adults. The diagnosis of OMN relies on renal biopsy and exhibits a significant reduction in the number of glomeruli and pronounced glomerular hypertrophy. Here, we report the case of an 8-year-old boy with recurrent proteinuria and abnormal external ears. A renal biopsy revealed large and rare glomeruli. The histological findings confirmed the diagnosis of OMN. Whole-exome sequencing of the patient revealed a new pathogenic variant in PBX1 (hg19, NM_002585, c.262delA, p.Thr88Glnfs*3). The PBX1 gene encodes a transcription factor whose pathogenic variants can result in congenital renal and urinary system anomalies, with or without hearing loss, abnormal ears, and developmental retardation (CAKUTED). This is the first report to detect PBX1 pathogenic variants in children with OMN, a novel phenotype of human PBX1 pathogenic variants. We performed functional prediction analyses of deletions in the corresponding structural domains. We summarized 27 cases of PBX1 single pathogenic variants reported between 2003 and 2023 in terms of truncating and missense pathogenic variants, which can deepen our understanding of the PBX1 structural domain and expand our knowledge of the PBX1 genotype and phenotype.


Assuntos
Nefropatias , Rim , Masculino , Criança , Adulto , Humanos , Sequenciamento do Exoma , Rim/anormalidades , Nefropatias/patologia , Fatores de Transcrição , Proteinúria/patologia
15.
J Ultrasound Med ; 42(1): 221-231, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35929079

RESUMO

OBJECTIVES: To investigate the brain tissue elasticity in normal term and premature neonates using compression elastography and shear wave elastography. METHODS: This prospective observational study enrolled term and premature neonates admitted to the Third Affiliated Hospital of Guangzhou Medical University between July 2019 and December 2020. RESULTS: A total of 106 neonates, including 65 premature neonates and 41 term neonates, were enrolled. The elastic modulus of the frontal white matter in males was significantly lower than in females (11.67 ± 0.98 versus 12.25 ± 1.31, P = .030), but the shear wave velocity of the thalamus in males was significantly lower than in females (1.18 ± 0.13 versus 1.82 ± 0.10, P < .001). There was no significant correlation between real-time body weight and brain tissue elasticity including elastic modulus and shear wave velocity. But, the shear wave velocity of parietal white matter (r = 0.319, P = .014) and thalamus (r = -0.268, P = .040) and the elastic modulus of parietal white matter (r = 0.356, P = .006) were correlated with corrected gestational age. CONCLUSIONS: Clinicians may consider using elastography to determine brain tissue elasticity in term and preterm neonates.


Assuntos
Técnicas de Imagem por Elasticidade , Masculino , Recém-Nascido , Feminino , Humanos , Estudos Prospectivos , Elasticidade , Encéfalo/diagnóstico por imagem , Módulo de Elasticidade
16.
Pestic Biochem Physiol ; 191: 105348, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963930

RESUMO

A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Atrativos Sexuais/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Odorantes , Simulação de Acoplamento Molecular , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Feromônios/metabolismo
17.
Nano Lett ; 22(14): 5788-5794, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35834670

RESUMO

Dynamic observation of the behaviors of nanomaterials in the cellular environment is of great significance in mechanistic investigations on nanomaterial-based diagnostics and therapeutics. Realizing label-free observations with nanometer resolution is necessary but still has major challenges. Herein, we propose a NanoSuit-assisted liquid-cell scanning electron microscopy (NanoSuit-LCSEM) method that enables imaging of the behaviors of nanoparticles in living cells. Taking A549 cells and gold nanoparticles (AuNPs) as a cell-nanoparticle interaction model, the NanoSuit-LCSEM method showed a significantly improved resolution to 10 nm, which is high enough to distinguish single and two adjacent 30 nm AuNPs in cells. The continuous observation time for living cells is extended to 30 min, and the trajectories and velocities for the transmembrane movement of AuNP aggregates are obtained. This study provides a new approach for dynamic observation of nanomaterials in intact living cells and will greatly benefit the interdisciplinary research of nanomaterials, nanomedicine, and nanotechnology.


Assuntos
Ouro , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Nanomedicina , Nanotecnologia
18.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175461

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic tumor and immune dysfunction is associated with ccRCC poor prognosis. The RhoGTPase-activating proteins (RhoGAPs) family was reported to affect ccRCC development, but its role in immunity and prognosis prediction for ccRCC remain unknown. In the current study, we found ARHGAP11A was the only independent risk factor among 33 RhoGAPs (hazard ratio [HR] 1.949, 95% confidence interval [CI] 1.364-2.785). High ARHGAP11A level was associated with shorter overall survival (OS, HR 2.040, 95% CI 1.646-3.417) and ARHGAP11A is a prognostic biomarker for ccRCC. ARHGAP11A knockdown suppressed renal cell carcinoma (RCC) cell proliferation, colony formation, and migration, suggesting the promoting role of ARHGAP11A on RCC development. Mechanistically, ARHGAP11A might contribute to the suppressive tumor immune microenvironment (TIME). High ARHGAP11A level was correlated with infiltration of immunosuppressive cells (including T helper 2 (Th2) cells, regulatory T (Treg) cells, myeloid derived suppressor cells (MDSC), and M2 macrophage cells), activation of immunosuppressive pathways (IL6-JAK-STAT3 signaling and IFNγ response), and expression of inhibitory immune checkpoints (ICs). ARHGAP11A could promote T cell exhaustion and induce immune escape. ccRCC patients with low ARHGAP11A level were more suitable for immune checkpoint inhibitors (ICIs) therapy, while those with high ARHGAP11A level might benefit from a combination of ARHGAP11A blockade and ICIs. In all, ARHGAP11A might serve as a novel prognostic marker, therapeutic target, and predictor in the clinical response to ICIs therapy for ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/genética , Biomarcadores , Imunossupressores , Neoplasias Renais/genética , Microambiente Tumoral/genética , Proteínas Ativadoras de GTPase/genética
19.
J Cell Physiol ; 237(7): 3030-3043, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478455

RESUMO

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. First, our data showed that L-OPA1 expression was downregulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , GTP Fosfo-Hidrolases/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , GTP Fosfo-Hidrolases/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Necroptose
20.
Mol Med ; 28(1): 85, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907805

RESUMO

BACKGROUND: Uncontrolled inflammation is an important factor in the occurrence and development of acute lung injury (ALI). Fibroblast growth factor-inducible 14 (Fn14), a plasma membrane-anchored receptor, takes part in the pathological process of a variety of acute and chronic inflammatory diseases. However, the role of Fn14 in ALI has not yet been elucidated. This study aimed to investigate whether the activation of Fn14 exacerbated lipopolysaccharide (LPS)-induced ALI in mice. METHODS: In vivo, ALI was induced by intratracheal LPS-challenge combined with/without Fn14 receptor blocker aurintricarboxylic acid (ATA) treatment in C57BL/6J mice. Following LPS administration, the survival rate, lung tissue injury, inflammatory cell infiltration, inflammatory factor secretion, oxidative stress, and NLRP3 inflammasome activation were assessed. In vitro, primary murine macrophages were used to evaluate the underlying mechanism by which Fn14 activated the NLRP3 inflammasome. Lentivirus was used to silence Fn14 to observe its effect on the activation of NLRP3 inflammasome in macrophages. RESULTS: In this study, we found that Fn14 expression was significantly increased in the lungs of LPS-induced ALI mice. The inhibition of Fn14 with ATA downregulated the protein expression of Fn14 in the lungs and improved the survival rate of mice receiving a lethal dose of LPS. ATA also attenuated lung tissue damage by decreasing the infiltration of macrophages and neutrophils, reducing inflammation, and suppressing oxidative stress. Importantly, we found that ATA strongly inhibited the activation of NLRP3 inflammasome in the lungs of ALI mice. Furthermore, in vitro, TWEAK, a natural ligand of Fn14, amplified the activation of NLRP3 inflammasome in the primary murine macrophage. By contrast, inhibition of Fn14 with shRNA decreased the expression of Fn14, NLRP3, Caspase-1 p10, and Caspase-1 p20, and the production of IL-1ß and IL-18. Furthermore, the activation of Fn14 promoted the production of reactive oxygen species and inhibited the activation of Nrf2-HO-1 in activated macrophages. CONCLUSIONS: Our study first reports that the activation of Fn14 aggravates ALI by amplifying the activation of NLRP3 inflammasome. Therefore, blocking Fn14 may be a potential way to treat ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Receptor de TWEAK/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA