Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(38): e2311736, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38552227

RESUMO

Nanomaterial-based yarns have been actively developed owing to their advantageous features, namely, high surface-area-to-volume ratios, flexibility, and unusual material characteristics such as anisotropy in electrical/thermal conductivity. The superior properties of the nanomaterials can be directly imparted and scaled-up to macro-sized structures. However, most nanomaterial-based yarns have thus far, been fabricated with only organic materials such as polymers, graphene, and carbon nanotubes. This paper presents a novel fabrication method for fully inorganic nanoribbon yarn, expanding its applicability by bundling highly aligned and suspended nanoribbons made from various inorganic materials (e.g., Au, Pd, Ni, Al, Pt, WO3, SnO2, NiO, In2O3, and CuO). The process involves depositing the target inorganic material on a nanoline mold, followed by suspension through plasma etching of the nanoline mold, and twisting using a custom-built yarning machine. Nanoribbon yarn structures of various functional inorganic materials are utilized for chemical sensors (Pd-based H2 and metal oxides (MOx)-based green gas sensors) and green energy transducers (water splitting electrodes/triboelectric nanogenerators). This method is expected to provide a comprehensive fabrication strategy for versatile inorganic nanomaterials-based yarns.

2.
ACS Appl Mater Interfaces ; 16(43): 59128-59142, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39255971

RESUMO

Multifunctional structural batteries promise advancements in structural energy storage technologies by seamlessly integrating load-bearing and energy-storage functions within a single material, reducing weight, and enhancing safety. Yet, commercialization faces challenges in materials processing, assembly, and design optimization. Here, we report a systematic approach to develop a carbon fiber (CF)-based structural battery impregnated with epoxy-based solid polymer electrolyte (SPE) via robust vacuum-assisted compression molding (VACM). Informed by cure kinetics, SPE processing enhances the multifunctional performance with no fillers or additives. The thin flexible CF-based laminae impregnated under high pressure achieved a substantial enhancement of ∼160% in the fiber volume fraction (FVF) as although thin and strip-shaped, the fibers were optimally packed with low void. A CF/SPE-based battery was fabricated, with a hybrid layered ionic liquid (IL)/ carbonate electrolyte (CE) showing enhanced safety and multifunctional performance. Enhanced by thin, uniform, and stiff CF-based composites, this study propels the development of advanced multifunctional structures, thereby expediting sustainable commercialization.

3.
ACS Appl Mater Interfaces ; 13(13): 15205-15215, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769779

RESUMO

Si has attracted considerable interest as a promising anode material for next-generation Li-ion batteries owing to its outstanding specific capacity. However, the commercialization of Si anodes has been consistently limited by severe instabilities originating from their significant volume change (approximately 300%) during the charge-discharge process. Herein, we introduce an ultrafast processing strategy of controlled multi-pulse flash irradiation for stabilizing the Si anode by modifying its physical properties in a spatially stratified manner. We first provide a comprehensive characterization of the interactions between the anode materials and the flash irradiation, such as the condensation and carbonization of binders, sintering, and surface oxidation of the Si particles under various irradiation conditions (e.g., flash intensity and irradiation period). Then, we suggest an effective route for achieving superior physical properties for Si anodes, such as robust mechanical stability, high electrical conductivity, and fast electrolyte absorption, via precise adjustment of the flash irradiation. Finally, we demonstrate flash-irradiated Si anodes that exhibit improved cycling stability and rate capability without requiring costly synthetic functional binders or delicately designed nanomaterials. This work proposes a cost-effective technique for enhancing the performance of battery electrodes by substituting conventional long-term thermal treatment with ultrafast flash irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA