Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646758

RESUMO

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Assuntos
Oryza , Rios , Solo , Áreas Alagadas , Solo/química , China , Rios/química , Oryza/crescimento & desenvolvimento , Oryza/química , Monitoramento Ambiental , Agricultura/métodos , Fósforo/análise , Fósforo/química , Carbono/análise , Carbono/química
2.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2985-2992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997409

RESUMO

The temperature sensitivity of soil carbon mineralization (Q10) is an important index to evaluate the responses of ecosystem carbon cycling to climate change. We examined the effects of three electron acceptors [SO42-, NO3- and Fe(Ⅲ)] addition on the Q10 value of anaerobic carbon mineralization of Phragmites australis community soil (0-10 cm) in the Yellow River Estuary wetland with the closed culture-gas chromatography method. The results showed that the three electron acceptors addition inhibited the production of CO2 and CH4 during the 48-day culture period, with a decrease of 17.3%-20.8% for CO2 and 29.2%-36.2% for CH4. Generally, the CO2 production differed with the concentrations of electron acceptors, while CH4 production differed with the type of electron acceptors. The CO2:CH4 ratios were significantly different with temperature, indicating an obvious temperature dependence for the anaerobic carbon mineralization pathway. The Q10 values of CO2 and CH4 production under three electron acceptor additions ranged from 1.08 to 1.11 and from 1.19 to 1.37, respectively, showing an increasing trend compared with the control. The type and concentration of electron acceptors affected the temperature dependence of CO2 production, while electron acceptors affected that of CH4 production. It is suggested that the input of reducing salts would retard the mineralization loss of organic carbon in estuary freshwater wetlands under the background of climate change, but enhance the sensitivity of carbon mineralization to increasing temperature.


Assuntos
Solo , Áreas Alagadas , Solo/química , Rios , Ecossistema , Dióxido de Carbono/análise , Carbono/análise , Estuários , Temperatura , Anaerobiose , Elétrons , Compostos Férricos , China , Metano/análise
3.
Huan Jing Ke Xue ; 44(8): 4698-4705, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694662

RESUMO

Carbon (C), nitrogen (N), and phosphorus (P) are important nutrients, and their ecological stoichiometric characteristics can reflect the quality and fertility capacity of soil, which is critical to understanding the stable mechanisms of estuarine wetland ecosystems. Under global changes, the increase in salinity and flooding caused by sea level rise will lead to changes in biogeochemical processes in estuarine wetlands, which is expected to affect the ecological stoichiometric characteristics of soil C, N, and P and ultimately interfere with the stability of wetland ecosystems. However, it remains unclear how the C, N, and P ecological stoichiometric characteristics respond to the water-salt environment in estuarine wetlands. We differentiated changes in the C, N, and P ecological stoichiometric characteristics through an ex-situ culture experiment for 23 months in the Yellow River Estuary Wetland. The five sites with distinct tidal hydrology were selected to manipulate translocation of soil cores from the freshwater marsh to high-, middle-, and low-tidal flats in June 2019. The results showed that soil water content (SWC); electrical conductivity (EC); and C, N, and P ecological stoichiometric characteristics of freshwater marsh soil significantly changed after translocation for 23 months. SWC decreased on the high- and middle-tidal flats (P<0.05) and increased on the low-tidal flat (P<0.05). EC increased to different degrees on all three tidal flats (P<0.05). Soil total organic carbon (TOC) and total nitrogen (TN) were significantly lower on the high-tidal flat (P<0.05), whereas total phosphorus (TP) was significantly lower on the middle- and high-tidal flats (P<0.05). C:N was decreased on the high- and middle-tidal flats (P<0.05); C:P and N:P were lower on the high-tidal flat; and all C, N, and P ecological stoichiometric characteristics showed no change on the low-tidal flat (P>0.05). Pearson's analysis showed that the ecological stoichiometric characteristics of C, N, and P were related to some properties of soil over the culture sites. The PLS-SEM model showed that the water-salt environment had different effects on soil C:N, C:P, and N:P through the main pathways of negative effects on soil TOC and TP. The results suggest that sea level rise may impact the C, N, and P ecological stoichiometric characteristics in freshwater marsh soil, resulting in some possible changes in the nutrient cycles of estuarine wetlands.

4.
Huan Jing Ke Xue ; 43(6): 3241-3252, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686794

RESUMO

To clarify the distribution characteristics and the ecological stoichiometric characteristics of nutrient elements in soils under different vegetation types, four typical natural wetlands, i.e., Phragmites australis wetland, Tamarix chinensis wetland, Suaeda salsa wetland, and Tidal flat wetland, as well as Gossypium spp. fields that were reclaimed from natural wetlands, were selected as study sites in the Yellow River Delta, and comparisons between the agricultural reclamation land and natural wetlands were conducted. The results showed that the soil total organic carbon (TOC) and total nitrogen (TN) contents in the natural wetlands were as follows:P. australis wetland and T. chinensis wetland>S. salsa wetland>Tidal flat, and the contents of TOC and TN were significantly negatively related to electrical conductivity (EC) and pH values (P<0.05). The contents of TOC, TN, and total phosphorus (TP) in Gossypium spp. fields were significantly higher than those in natural wetlands (P<0.05), especially the contents of nitrate nitrogen (NO3--N) in Gossypium spp. fields, which were 9.4-11.4 times that of natural wetlands. However, no significant correlations between TOC, TN, and TP and EC and pH values (P>0.05) were observed in Gossypium spp. fields. The results of correlation analysis showed that the C/N of natural wetlands were mainly controlled by the contents of TN (P<0.05), and the C/N of the Gossypium spp. fields were significantly lower than those of natural wetlands (P<0.05). The soil C/P and N/P of natural wetlands and Gossypium spp. fields in the Yellow River Delta were low, and the variation trends were consistent with those of soil TOC and TN. Comparative analysis revealed, on the whole, that there were significantly different soil nutrient element contents, C/N, C/P, and N/P in Gossypium spp. fields compared to those of natural wetlands (P<0.05). The process of reclamation could significantly change the spatial distribution of nutrient elements in wetlands. Our results should be of importance in revealing the biogeochemical process of soil nutrient elements in coastal wetland and the influence of agricultural reclamation activities on the differentiation of soil nutrient elements.


Assuntos
Solo , Áreas Alagadas , Carbono/análise , China , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Rios/química , Solo/química
5.
Ying Yong Sheng Tai Xue Bao ; 18(1): 185-92, 2007 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-17396522

RESUMO

With intact soil core and by using acetylene inhibition method, this paper measured the N2O emission and denitrification rates of typical Calamagrostis angustifolia wetland soils in Sanjiang Plain, analyzed their relationships with environmental factors, and estimated the total amounts of N2O emission and denitrification loss. The results showed that meadow marsh soil and humus marsh soil had a similar change range of N2O emission rate (0.020-0.089 kg N x hm(2) x d(-1) and 0.012-0.033 kg N x hm(2) x d(-1), respectively), but the former had a much higher N2O emission rate than the latter, and the difference was significant (P < 0.05). As for denitrification rate, its change range was 0.024-0.127 kg N x hm(2) x d(-1) for meadow marsh soil and 0.021-0.043 kg N x hm(2) x d(-1) for humus marsh soil. Meadow marsh soil also had a higher denitrification rate than humus marsh soil, but the difference was not significant (P > 0.05). In meadow marsh soil, nitrification played an important role in N2O emission and nitrogen loss; while in humus marsh soil, denitrification was the main process inducing N2O emission and nitrogen loss. For these two soils, nitrogenous compounds were not the important factor affecting nitrification-denitrification. In meadow marsh soil, temperature had more evident effect, where nitrification-denitrification had a significant positive correlation with the soil temperature at the depths of 5 cm, 10 cm and 15 cm (P < 0.05). Soil moisture condition was another important factor inducing the difference of N2O emission and denitrification rates. In growth season, the amount of N2O emission and denitrification loss was 5.216 kg N x hm(-2) and 6.166 kg N x hm(-2) for meadow marsh soil, and 3.196 kg N x hm(-2) and 4.407 kg N x hm(-2) for humus marsh soil, respectively. In the denitrification productions of meadow marsh soil and humus marsh soil, the maximum value of N2O/N2 ratio was 5.49 and 3.76, respectively, indicating that the proportion of N2 in denitrification productions was higher in humus marsh soil than in meadow marsh soil, and the seasonal waterlogged condition could induce the decrease of N2O/N2 ratio.


Assuntos
Biodegradação Ambiental , Nitrogênio/análise , Óxido Nitroso/análise , Solo/análise , Áreas Alagadas , China , Nitrogênio/química
6.
Huan Jing Ke Xue ; 27(11): 2145-9, 2006 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-17326416

RESUMO

Using the static chamber and chromatogram method, H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia in Sanjiang Plain were measured during growth season(5-9 month), the results showed that the seasonal and diurnal variations of H2S and COS emission fluxes were obvious, the mean H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia were 0.34 microg x (m2 x h)(-1) and - 0.29 microg x (m2 x h)(-1) respectively, the Calamagrostis angustifolia wetlands were the sources for H2S and the sinks for COS during the growth time. The emission fluxes of H2S and COS were affected by the Calamagrostis angustifolia growth, and there were H2S emission peak and COS absorbed peak during the bloom growth time, meanwhile the integrative correlation of H2S and COS emission fluxes were observed.


Assuntos
Sulfeto de Hidrogênio/análise , Poaceae/metabolismo , Óxidos de Enxofre/análise , Áreas Alagadas , Ar/análise , China , Monitoramento Ambiental , Poaceae/crescimento & desenvolvimento , Estações do Ano , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA