Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Langmuir ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051492

RESUMO

Recently, flexible transparent conductive films composed of metal nanowires have received significant interest, particularly for flexible electronics. However, the high contact resistance among metal nanowires and the weak bonding effect between metal nanowires and substrates often result in films whose conductivity, adhesion, and flexibility fall short of the stringent requirements demanded by real-world uses. We developed a simple method to fabricate high-performance flexible transparent conductive films via successively spin-coating silver nanowires (AgNWs) and acidic silica sol onto the surface of the substrate. Under the capillary force of ethanol and the etching effect of hydrochloric acid, the adjacent AgNWs are induced to chemically weld in situ to form a stable network. The resulting composite film exhibits a sheet resistance of only 8.5 Ω/sq, marking an impressive 80% decrease compared with the pristine AgNW film. Meanwhile, the silica sol acts as a filler, improving light transmittance while further reinforcing the network structure and firmly bonding it to the substrate. Thus, the delamination of the nanowires under bending motion is effectively inhibited, and the resulting film was endowed with resistance remaining below 15 Ω/sq after 3000 bending and 200 tape peeling. The energy-efficient in situ chemical welding and reinforcement method for nanowires provides an innovative strategy for the batch preparation of flexible transparent conductive films.

2.
Ecotoxicol Environ Saf ; 269: 115769, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039856

RESUMO

Prenatal exposure to methamphetamine (METH) is an issue of global concern due to its adverse effects on offspring, particularly its impact on liver health, an area still not fully understood. Inulin, a recognized prebiotic, is thought to potentially ameliorate these developmental disorders and toxic injuries in progeny. To investigate the effects of prenatal METH exposure on the liver and the role of gut microbiota, we established a murine model, the subjects of which were exposed to METH prenatally and subsequently treated with inulin. Our findings indicate that prenatal METH exposure causes liver damage in offspring, as evidenced by a decreased liver index, histopathological changes, diminished glycogen synthesis, hepatic dysfunction, and alterations in mRNA profiles. Furthermore, it impairs the antioxidant system and induces oxidative stress, possibly due to changes in cecal microbiota and dysregulation of bile acid homeostasis. However, maternal inulin supplementation appears to restore the gut microbiota in offspring and mitigate the hepatotoxic effects induced by prenatal METH exposure. Our study provides definitive evidence of METH's transgenerational hepatotoxicity and suggests that maternal inulin supplementation could be an effective preventive strategy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Metanfetamina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Camundongos , Animais , Humanos , Metanfetamina/toxicidade , Inulina/farmacologia , Suplementos Nutricionais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
3.
Ecotoxicol Environ Saf ; 279: 116457, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754198

RESUMO

Methamphetamine (METH) is a psychostimulant drug belonging to the amphetamine-type stimulant class, known to exert male reproductive toxicity. Recent studies suggest that METH can disrupt the gut microbiota. Furthermore, the gut-testis axis concept has gained attention due to the potential link between gut microbiome dysfunction and reproductive health. Nonetheless, the role of the gut microbiota in mediating the impact of METH on male reproductive toxicity remains unclear. In this study, we employed a mouse model exposed to escalating doses of METH to assess sperm quality, testicular pathology, and reproductive hormone levels. The fecal microbiota transplantation method was employed to investigate the effect of gut microbiota on male reproductive toxicity. Transcriptomic, metabolomic, and microbiological analyses were conducted to explore the damage mechanism to the male reproductive system caused by METH. We found that METH exposure led to hormonal disorders, decreased sperm quality, and changes in the gut microbiota and testicular metabolome in mice. Testicular RNA sequencing revealed enrichment of several Gene Ontology terms associated with reproductive processes, as well as PI3K-Akt signaling pathways. FMT conveyed similar reproductive damage from METH-treated mice to healthy recipient mice. The aforementioned findings suggest that the gut microbiota plays a substantial role in facilitating the reproductive toxicity caused by METH, thereby highlighting a prospective avenue for therapeutic intervention in the context of METH-induced infertility.


Assuntos
Microbioma Gastrointestinal , Metanfetamina , Reprodução , Testículo , Animais , Metanfetamina/toxicidade , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Testículo/efeitos dos fármacos , Testículo/patologia , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estimulantes do Sistema Nervoso Central/toxicidade , Transplante de Microbiota Fecal
4.
Ecotoxicol Environ Saf ; 280: 116538, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833980

RESUMO

Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Metanfetamina , Camundongos Knockout , Receptores sigma , Receptor Sigma-1 , Metanfetamina/toxicidade , Animais , Receptores sigma/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fezes/química , Fezes/microbiologia
5.
Nature ; 546(7658): 436-439, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28448066

RESUMO

CRISPR-Cas9 systems are bacterial adaptive immune systems that defend against infection by phages. Through the RNA-guided endonuclease activity of Cas9 they degrade double-stranded DNA with a protospacer adjacent motif (PAM) and sequences complementary to the guide RNA. Recently, two anti-CRISPR proteins (AcrIIA2 and AcrIIA4 from Listeria monocytogenes prophages) were identified, both of which inhibit Streptococcus pyogenes Cas9 (SpyCas9) and L. monocytogenes Cas9 activity in bacteria and human cells. However, the mechanism of AcrIIA2- or AcrIIA4-mediated Cas9 inhibition remains unknown. Here we report a crystal structure of SpyCas9 in complex with a single-guide RNA (sgRNA) and AcrIIA4. Our data show that AcrIIA2 and AcrIIA4 interact with SpyCas9 in a sgRNA-dependent manner. The structure reveals that AcrIIA4 inhibits SpyCas9 activity by structurally mimicking the PAM to occupy the PAM-interacting site in the PAM-interacting domain, thereby blocking recognition of double-stranded DNA substrates by SpyCas9. AcrIIA4 further inhibits the endonuclease activity of SpyCas9 by shielding its RuvC active site. Structural comparison reveals that formation of the AcrIIA4-binding site of SpyCas9 is induced by sgRNA binding. Our study reveals the mechanism of SpyCas9 inhibition by AcrIIA4, providing a structural basis for developing 'off-switch' tools for SpyCas9 to avoid unwanted genome edits within cells and tissues.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas a CRISPR/antagonistas & inibidores , Listeria monocytogenes/enzimologia , Listeria monocytogenes/virologia , Prófagos/genética , Streptococcus pyogenes/enzimologia , Proteínas Virais/metabolismo , Sítios de Ligação , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Edição de Genes , Listeria monocytogenes/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato , Proteínas Virais/genética
6.
Ecotoxicol Environ Saf ; 264: 115396, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625336

RESUMO

Organophosphorus flame retardants (OPFRs), including 2-ethylhexyl diphenyl phosphate (EHDPHP), are prevalent in everyday life due to their broad usage in fields such as healthcare, electronics, industry, and sports. These compounds, added to polymers through physical mixing, can leach into the environment, posing a risk to humans through direct contact or the food chain. Despite known associations with health issues like endocrine disruption, neurotoxicity, and reproductive toxicity, the implications of perinatal EHDPHP exposure on both mothers and offspring are still unclear. This study aimed to investigate the neuroinflammatory effects of EHDPHP and the potential mitigating role of inulin. Pregnant C57 mice were administered either a corn oil control or an EHDPHP solution (300 µg/kg bw/d) from gestation day 7 (GD7) to postnatal day 21 (PND21). Concurrently, mice were provided either regular drinking water or water supplemented with 1% inulin. We found that EHDPHP significantly increased the serum levels of IL-1ß, IL-6, and MDA, but decreased SOD levels in both mothers and pups. These effects were reversed by inulin supplementation. RNA-sequencing revealed that EHDPHP induced inflammation and oxidative stress through the TLR4/NF-κB pathway, which was mitigated by inulin. In conclusion, inulin ameliorated EHDPHP-induced neuroinflammation and oxidative stress in both mothers and offspring, highlighting its potential therapeutic role.


Assuntos
Retardadores de Chama , Fosfatos , Gravidez , Camundongos , Humanos , Feminino , Animais , Organofosfatos/toxicidade , Inulina , Doenças Neuroinflamatórias , Estresse Oxidativo , Retardadores de Chama/toxicidade
7.
Forensic Sci Med Pathol ; 18(3): 319-328, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35543929

RESUMO

The identification of ante- and post-mortem burns is challenging in forensic pathology. In this study, microarray analysis was used to detect the mRNA expression profiles in the skin of an experimental burn mouse model; the results were validated using RT-qPCR. Differentially expressed mRNAs (DE-mRNAs) were assessed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our results revealed that mRNA expression of 501 genes was significantly different, of which 273 were upregulated and 228 were downregulated in ante-mortem burned mice skin. The expression levels of eight random mRNAs were consistent when measured using the microarray assay-based method and RT-qPCR. Genes from different functional categories and signalling pathways were enriched, including interleukin-20 binding, type IV hypersensitivity, negative regulation of acute inflammatory response, sensory organ development, endocytosis, neuroactive ligand-receptor interaction, and Jak-STAT signalling pathway. Only five of the eight mRNAs exhibited consistent changes in expression between burned skin samples of mice and human autopsy specimens. Our findings showed that DE-mRNAs revealed using microarray are potential biomarkers of ante-mortem burns. However, DE-mRNAs identified from experimental animal models cannot be directly extended to autopsy specimens without careful validation.


Assuntos
Queimaduras , Perfilação da Expressão Gênica , Animais , Humanos , Perfilação da Expressão Gênica/métodos , Projetos Piloto , Ligantes , Análise em Microsséries , Biomarcadores , RNA Mensageiro/metabolismo , Interleucinas/genética
8.
World J Surg Oncol ; 18(1): 26, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013978

RESUMO

BACKGROUND: Even with the augmentative application of anal-preservation surgery in low rectal cancer, the role and indications of laparoscopic intersphincteric resection (Lap ISR) are still under debate, especially for T3 or node-positive (T3N0M0, T1-3N+M0) cancer, mainly due to the oncological safety and functional outcomes. INTRABEAM (Carl Zeiss, Germany) intraoperative radiotherapy (IORT) using low-energy X-rays features in accurate irradiation, less exposure, and reduced complications. Taking advantages of Lap ISR and INTRABEAM IORT, this innovative approach aims to increase the probability of the anal preservation with acceptable postoperative outcomes. MATERIALS AND METHODS: From December 2015 to August 2019, we retrospectively analyzed the short-term outcomes of 12 patients evaluated preoperatively with T3 or node-positive (T3N0M0, T1-3N+M0) primary locally advanced low rectal cancer. They all had received Lap ISR and INTRABEAM IORT with a dose of 16-18 Gy applied by an applicator through the anus (natural orifice). Then, with no pre- or postoperative radiotherapy given, the patients were suggested to receive 6-8 cycles of the XELOX chemotherapy regimen (oxaliplatin, 130 mg/m2 and capecitabine, 1000 mg/m2). RESULTS: All patients achieved R0 resection. The median radiation time was 27 min and 15 s, and the mean radiative dose was 17.3 Gy (range 16-18 Gy). The median follow-up time was 18.5 months (range 3-45 months). Two patients experienced local recurrence. Two male patients experienced anastomotic stenosis. Furthermore, one of them experienced perianal abscess and the other one experienced pulmonary metastasis after refusing to receive chemotherapy. One female patient with internal anal sphincter invasion experienced distant metastases to the liver and gluteus maximus muscle 35 months after IORT. No acute radiation injuries or symptoms were observed. Although they experienced a reduction in anal function, every patient was satisfied with the postoperative outcomes. CONCLUSIONS: For patients evaluated preoperatively with T3 or node-positive (T3N0M0, T1-3N+M0) primary locally advanced low rectal cancer, Lap ISR with INTRABEAM IORT may be a safe and feasible approach for anal preservation without compromising oncological outcomes.


Assuntos
Canal Anal/cirurgia , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Cuidados Intraoperatórios , Laparoscopia/métodos , Radioterapia Adjuvante/métodos , Neoplasias Retais/terapia , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Neoplasias Retais/patologia , Estudos Retrospectivos , Resultado do Tratamento
9.
World J Surg Oncol ; 16(1): 133, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981575

RESUMO

BACKGROUND: In order to overcome the shortcomings of laparoscopic intersphincteric resection (Lap ISR), an alternative method of delivering intraoperative radiotherapy by Intrabeam X-rays radiotherapy system (XRS) is proposed in this paper. Intrabeam XRS is a device that uses low-energy X-rays source generated by a mobile controller unit, which is featured in accurate irradiation, reduced complications, and less exposure. The purpose of this study is to discuss the feasibility of Lap ISR with intra-operative radiotherapy using low-energy X-rays for locally advanced ultra-low rectal cancer in Asian woman. This novel proposed method will greatly increase the anus preserving probability and improved the quality of life. METHODS: A 53-year-old woman diagnosed with rectal adenocarcinoma had a strong desire to preserve the anal function and presented at the Jilin University Second Hospital, Jilin, China. The tumor's size was 4 cm × 3 cm. It was located 2 cm from the anus merge and invaded the levator ani muscle. Preoperative clinical staging was T4N1M0 and could be reached R0 resection. After the consent form was signed by the patient, Lap ISR combined with the applicator put through the anus (natural orifice) to the tumor bed was performed and prophylactic ileostomy synchronized the anastomosis. Patient only received 1-cycle chemotherapy regimen of oxaliplatin with capecitabine postoperatively due to personal reasons. Pre- or postoperative radiotherapy was not given. RESULTS: After clinical follow-up, until now, there is not any sign of local recurrence. Anus function and short-term complications are acceptable. The short-term effect is satisfying and we look forward to further assess the long-term effect. CONCLUSION: Laparoscopic intersphincteric resection with IORT using low-energy X-rays for the patients with late-stage ultra-low rectal cancer could provide an opportunity of preserving the anus function, and it is feasible for the selected patients. TRIAL REGISTRATION: Retrospectively registered; Trial registration: NCT03393234 ; Registered time: 05 January 2017.


Assuntos
Neoplasias Retais , Terapia por Raios X , Canal Anal , Feminino , Humanos , Laparoscopia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico , Qualidade de Vida , Neoplasias Retais/radioterapia , Neoplasias Retais/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
10.
J Hazard Mater ; 474: 134823, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852254

RESUMO

Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.


Assuntos
Cardiotoxicidade , Poliestirenos , Proteínas Serina-Treonina Quinases , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Proteína Supressora de Tumor p53 , Regulação para Cima , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Cardiotoxicidade/etiologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Poliestirenos/toxicidade , Regulação para Cima/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Miocárdio/metabolismo , Miocárdio/patologia
11.
Environ Pollut ; 346: 123659, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417603

RESUMO

Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.


Assuntos
Compostos de Bifenilo , Microbioma Gastrointestinal , Fosfatos , Gravidez , Feminino , Humanos , Fosfatos/farmacologia , NF-kappa B , Lipopolissacarídeos , Inulina/farmacologia , Receptor 4 Toll-Like/metabolismo , Inflamação
12.
Chemosphere ; 331: 138716, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37076086

RESUMO

Overcoming the instability and poor recyclability during the practical applications of contaminant scavengers is a challenging topic. Herein, a three-dimensional (3D) interconnected carbon aerogel (nZVI@Fe2O3/PC) embedding a core-shell nanostructure of nZVI@Fe2O3 was elaborately designed and fabricated via an in-situ self-assembly process. The porous carbon with 3D network architecture exhibits strong adsorption towards various antibiotic contaminants in water, where the stably embedded nZVI@Fe2O3 nanoparticles not only serve as magnetic seeds for recycling, but also avoid the shedding and oxidation of nZVI in the adsorption process. As a result, nZVI@Fe2O3/PC efficiently captures sulfamethoxazole (SMX), sulfamethazine (SMZ), ciprofloxacin (CIP), tetracycline (TC) and other antibiotics in water. In particular, an excellent adsorptive removal capacity of 329 mg g-1 and a rapid capture kinetics (99% of removal efficiency in 10 min) under a wide pH adaptability (2-8) are achieved using nZVI@Fe2O3/PC as an SMX scavenger. nZVI@Fe2O3/PC displays exceptional long-term stability given that it shows excellent magnetic property after it is stored in water solution for 60 d, making it an ideal stable scavenger for contaminants in an etching-resistant and efficient manner. This work would also provide a general strategy to develop other stable iron-based functional architectures for efficient catalytic degradation, energy conversion and biomedicine.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/química , Carbono/química , Porosidade , Poluentes Químicos da Água/química , Água/química , Adsorção
13.
ACS Nano ; 17(15): 15125-15145, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486121

RESUMO

Dietary pollution by polystyrene microplastics (MPs) can cause hepatic injuries and microbial dysbiosis. Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, exerts beneficial effects on the liver by modulating the gut microbiota. However, the role of microbiota in MPs-induced hepatic injuries and the protective effect of EGCG have not been clarified. Here, 5 µm MPs were orally administered to mice to induce hepatic injuries. Subsequently, antibiotic cocktail (ABX) and fecal microbial transplant (FMT) experiments were performed to investigate the underlying microbial mechanisms. Additionally, EGCG was orally administered to mice to explore its protection against MPs-induced hepatic injuries. Our results showed that MPs activated systemic and hepatic inflammation, promoted fibrosis, and altered the liver metabolome; meanwhile, MPs damaged the gut homeostasis by disturbing the gut microbiome, promoting colonic inflammation, and impairing the intestinal barrier. Notably, MPs reduced the abundance of the probiotics Akkermansia, Mucispirillum, and Faecalibaculum while increasing the pathogenic Tuzzerella. Interestingly, the elimination of gut microbiota mitigated MPs-induced colonic inflammation and intestinal barrier impairment. Moreover, ABX ameliorated MPs-induced systemic and hepatic inflammation but not fibrosis. Correspondingly, microbiota from MPs-administered mice induced colonic, systemic, and hepatic inflammation, while their profibrosis effect on the liver was not observed. Finally, EGCG elevated the abundance of probiotics and effectively repressed MPs-induced colonic inflammation. MPs-induced systemic and hepatic inflammation, fibrosis, and remodeling of the liver metabolome were also attenuated by EGCG. These findings illustrated that gut microbiota contributed to MPs-induced colonic and hepatic injuries, while EGCG could serve as a potential prevention strategy for these adverse consequences.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Microplásticos , Plásticos , Poliestirenos/farmacologia , Inflamação
14.
Acta Pharm Sin B ; 13(12): 4801-4822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045052

RESUMO

Methamphetamine (Meth) abuse can cause serious mental disorders, including anxiety and depression. The gut microbiota is a crucial contributor to maintaining host mental health. Here, we aim to investigate if microbiota participate in Meth-induced mental disorders, and the potential mechanisms involved. Here, 15 mg/kg Meth resulted in anxiety- and depression-like behaviors of mice successfully and suppressed the Sigma-1 receptor (SIGMAR1)/BDNF/TRKB pathway in the hippocampus. Meanwhile, Meth impaired gut homeostasis by arousing the Toll-like receptor 4 (TLR4)-related colonic inflammation, disturbing the gut microbiome and reducing the microbiota-derived short-chain fatty acids (SCFAs). Moreover, fecal microbiota from Meth-administrated mice mediated the colonic inflammation and reproduced anxiety- and depression-like behaviors in recipients. Further, SCFAs supplementation optimized Meth-induced microbial dysbiosis, ameliorated colonic inflammation, and repressed anxiety- and depression-like behaviors. Finally, Sigmar1 knockout (Sigmar1-/-) repressed the BDNF/TRKB pathway and produced similar behavioral phenotypes with Meth exposure, and eliminated the anti-anxiety and -depression effects of SCFAs. The activation of SIGMAR1 with fluvoxamine attenuated Meth-induced anxiety- and depression-like behaviors. Our findings indicated that gut microbiota-derived SCFAs could optimize gut homeostasis, and ameliorate Meth-induced mental disorders in a SIGMAR1-dependent manner. This study confirms the crucial role of microbiota in Meth-related mental disorders and provides a potential preemptive therapy.

15.
Front Microbiol ; 14: 1143648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089558

RESUMO

Introduction: Depression is a common mental disorder that affects approximately 350 million people worldwide. Much remains unknown about the molecular mechanisms underlying this complex disorder. Sigma-1 receptor (Sig-1R) is expressed at high levels in the central nervous system. Increasing evidence has demonstrated a close association between the Sig-1R and depression. Recently, research has suggested that the gut microbiota may play a crucial role in the development of depression. Methods: Male Sig-1R knockout (Sig-1R KO) and wild-type (WT) mice were used for this study. All transgenic mice were of a pure C57BL/6J background. Mice received a daily gavage of vancomycin (100 mg/kg), neomycin sulfate (200 mg/kg), metronidazole (200 mg/kg), and ampicillin (200 mg/kg) for one week to deplete gut microbiota. Fecal microbiota transplantation (FMT) was conducted to assess the effects of gut microbiota. Depression-like behaviors was evaluated by tail suspension test (TST), forced swimming test (FST) and sucrose preference test (SPT). Gut microbiota was analyzed by 16s rRNA and hippocampal transcriptome changes were assessed by RNA-seq. Results: We found that Sig-1R knockout induced depression-like behaviors in mice, including a significant reduction in immobility time and an increase in latency to immobility in the FST and TST, which was reversed upon clearance of gut microbiota with antibiotic treatment. Sig-1R knockout significantly altered the composition of the gut microbiota. At the genus level, the abundance of Alistipes, Alloprevotella, and Lleibacterium decreased significantly. Gut microbiota dysfunction and depression-like phenotypes in Sig-1R knockout mice could be reproduced through FMT experiments. Additionally, hippocampal RNA sequencing identified multiple KEGG pathways that are associated with depression. We also discovered that the cAMP/CREB/BDNF signaling pathway is inhibited in the Sig-1R KO group along with lower expression of neurotrophic factors including CTNF, TGF-α and NGF. Fecal bacteria transplantation from Sig-1R KO mice also inhibited cAMP/CREB/BDNF signaling pathway. Discussion: In our study, we found that the gut-brain axis may be a potential mechanism through which Sig-1R regulates depression-like behaviors. Our study provides new insights into the mechanisms by which Sig-1R regulates depression and further supports the concept of the gut-brain axis.

16.
Chem Biol Interact ; 379: 110512, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116852

RESUMO

Methamphetamine (METH) is a psychotropic drug known to cause cardiotoxicity. The gut-heart axis is emerging as an important pathway linking gut microbiota to cardiovascular disease, but the precise association between METH-induced cardiotoxicity and gut microbiota has yet to be elucidated. In this study, we established an escalating dose-multiple METH administration model in male BALB/c mice, examined cardiac injury and gut microbiota, and investigated the contribution of gut microbiota to cardiotoxicity induced by METH. Additionally, we treated mice with antibiotics and fecal microbiota transplantation (FMT) to assess the impact of gut microbiota on cardiotoxicity. Our results showed that METH exposure altered the p53 and PI3K/Akt signaling pathways and modulated the apoptosis pathway in heart tissue, accompanied by elevated levels of Bax/BCL-2 expression and cleaved caspase-3 proteins. METH exposure increased the diversity and richness of gut microbiota, and significantly changed the microbial community composition, accompanied by elevated abundance of Lactobacillus, Bifidobacterium, and decreased abundance of Bacteroides, norank_f_Muribaculaceae and Alistipes. Eliminating gut microbiota by antibiotics treatment alleviated METH-induced cardiotoxicity, while FMT treatment transferred similar cardiac injury manifestations from METH-exposed mice to healthy recipient mice. Our study unveils the crucial involvement of gut microbiota in the development of cardiotoxicity induced by METH and provides potential strategies for treating cardiac complications caused by METH.


Assuntos
Microbioma Gastrointestinal , Metanfetamina , Masculino , Camundongos , Animais , Metanfetamina/toxicidade , Cardiotoxicidade , Fosfatidilinositol 3-Quinases , Antibacterianos
17.
Sci Total Environ ; 892: 164619, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269995

RESUMO

Polystyrene microplastics (PS-MPs) have emerged as a concerning pollutant in modern society due to their widespread production and usage. Despite ongoing research efforts, the impact of PS-MPs on mammalian behavior and the mechanisms driving these effects remain incompletely elucidated. Consequently, effective strategies for prevention have yet to be developed. To fill these gaps, C57BL/6 mice were orally administered with 5 µm PS-MPs for 28 consecutive days in this study. The open-field test and the elevated plus-maze test were performed to evaluate the anxiety-like behavior, 16S rRNA sequencing and untargeted metabolomics analysis were used to detect the changes of gut microbiota and serum metabolites. Our results indicated that PS-MPs exposure activated hippocampal inflammation and induced anxiety-like behavior in mice. Meanwhile, PS-MPs disturbed the gut microbiota, impaired the intestinal barrier, and aroused peripheral inflammation. Specifically, PS-MPs increased the abundance of pathogenic microbiota Tuzzerella, while lowered the abundance of probiotics Faecalibaculum and Akkermansia. Interestingly, eliminating the gut microbiota protected against the deleterious effects of PS-MPs on intestinal barrier integrity, reduced the levels of peripheral inflammatory cytokines, and ameliorated anxiety-like behavior. Additionally, green tea's primary bioactive constituent, epigallocatechin-3-gallate (EGCG), optimized gut microbial composition, improved intestinal barrier function, reduced peripheral inflammation, and exerted anti-anxiety effects by inhibiting the hippocampal TLR4/MyD88/NF-κB signaling cascade. EGCG also remodeled serum metabolism, especially modulated purine metabolism. These findings suggested that gut microbiota participates in PS-MPs-induced anxiety-like behavior by modulating the gut-brain axis, and that EGCG could serve as a potential preventive strategy.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microplásticos , Plásticos , Poliestirenos/toxicidade , RNA Ribossômico 16S , Homeostase , Inflamação/induzido quimicamente , Mamíferos
18.
Toxicology ; 486: 153447, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720452

RESUMO

Methamphetamine (Meth) abuse can cause severe anxiety disorder and interfere with gut homeostasis. Obeticholic acid (OCA) has emerged as a protective agent against diet-related anxiety that improves gut homeostasis. The potential for OCA to ameliorate Meth-induced anxiety, and the microbial mechanisms involved, remain obscure. Here, C57/BL6 mice were intraperitoneally injected with Meth (15 mg/kg) to induce anxiety-like behavior. 16 S rRNA sequence analysis and fecal microbiome transplantation (FMT) were used to profile the gut microbiome and evaluate its effects, respectively. Orally administered OCA was investigated for protection against Meth-induced anxiety. Results indicated that Meth mediated anxiety-like behavior, aroused hippocampal neuroinflammation through activation of the TLR4/MyD88/NF-κB pathway, weakened intestinal barrier and disturbed the gut microbiome. Specifically, abundance of anxiety-related Rikenella was increased. FMT from Meth-administrated mice also weakened intestinal barrier and elevated serum LPS, inducing hippocampal neuroinflammation and anxiety-like behavior in recipient mice. Finally, OCA pretreatment ameliorated Meth-induced impairment of gut homeostasis by reshaping the microbial composition and improving the intestinal barrier. Meth-induced anxiety-like behavior and hippocampal neuroinflammation were also ameliorated by OCA pretreatment. These preliminary findings reveal the crucial role of gut microbiota in Meth-induced anxiety-like behavior and neuroinflammation, highlighting OCA as a potential candidate for the prevention of Meth-induced anxiety.


Assuntos
Metanfetamina , Microbiota , Camundongos , Animais , Metanfetamina/toxicidade , Doenças Neuroinflamatórias , Ansiedade/induzido quimicamente , Ansiedade/prevenção & controle
19.
Biomedicines ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893138

RESUMO

Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be involved in various processes related to cardiovascular disease. However, the role of Sigmar1 in TTS remains unresolved. In this study, we established a mouse model of TTS using wild-type and Sigmar1 knockout mice to investigate the involvement of Sigmar1 in TTS development. Our results revealed that Sigmar1 knockout exacerbated cardiac dysfunction, with a noticeable decrease in ejection fraction (EF) and fractional shortening (FS) compared to the wild-type model. In terms of the gut microbiome, we observed regulation of Firmicutes and Bacteroidetes ratios; suppression of probiotic Lactobacillus growth; and a rise in pathogenic bacterial species, such as Colidextribacter. Metabolomic and transcriptomic analyses further suggested that Sigmar1 plays a role in regulating tryptophan metabolism and several signaling pathways, including MAPK, HIF-1, calcium signaling, and apoptosis pathways, which may be crucial in TTS pathogenesis. These findings offer valuable insight into the function of Sigmar1 in TTS, and this receptor may represent a promising therapeutic target for TTS.

20.
Front Microbiol ; 14: 1255971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720144

RESUMO

Introduction: Heart failure (HF) is usually the end stage of the continuum of various cardiovascular diseases. However, the mechanism underlying the progression and development of HF remains poorly understood. The sigma-1 receptor (Sigmar1) is a non-opioid transmembrane receptor implicated in many diseases, including HF. However, the role of Sigmar1 in HF has not been fully elucidated. Methods: In this study, we used isoproterenol (ISO) to induce HF in wild-type (WT) and Sigmar1 knockout (Sigmar1-/-) mice. Multi-omic analysis, including microbiomics, metabolomics and transcriptomics, was employed to comprehensively evaluate the role of Sigmar1 in HF. Results: Compared with the WT-ISO group, Sigmar1-/- aggravated ISO-induced HF, including left ventricular systolic dysfunction and ventricular remodeling. Moreover, Sigmar1-/- exacerbated ISO-induced gut microbiota dysbiosis, which was demonstrated by the lower abundance of probiotics g_Akkermansia and g_norank_f_Muribaculaceae, and higher abundance of pathogenic g_norank_f_Oscillospiraceae and Allobaculum. Furthermore, differential metabolites among WT-Control, WT-ISO and Sigmar-/--ISO groups were mainly enriched in bile secretion, tryptophan metabolism and phenylalanine metabolism, which presented a close association with microbial dysbiosis. Corresponding with the exacerbation of the microbiome, the inflammation-related NOD-like receptor signaling pathway, NF-kappa B signaling pathway and TNF signaling pathway were activated in the heart tissues. Conclusion: Taken together, this study provides evidence that a Sigmar1 knockout disturbs the gut microbiota and remodels the serum metabolome, which may exacerbate HF by stimulating heart inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA