Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1181: 338873, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556237

RESUMO

S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are important metabolites in the one-carbon cycle that modulates cellular methylation required for proliferation and epigenetic regulation. Their concentrations, synthesis, and turnover are difficult to determine conveniently and reliably. We have developed such a method by coupling a simple and rapid purification scheme that efficiently captures both compounds, with high sensitivity, sample throughput direct infusion nanoelectrospray ultra-high-resolution Fourier transform mass spectrometry (DI-nESI-UHR-FTMS). This method is compatible with Stable Isotope-Resolved Metabolomic (SIRM) analysis of numerous other metabolites. The limits of detection for both SAM and SAH were <1 nM, and the linearity range was up to 1000 nM. The method was first illustrated for SAM/SAH analysis of mouse livers, and lung adenocarcinoma A549 cells. We then applied the method to track 13C1-CH3-Met incorporation into SAM and 13C6-glucose transformation into SAM and SAH via de novo synthesis. We further used the method to show the distinct effects on A549 and H1299 cells with treatment of anti-cancer methylseleninic acid (MSA), selenite, and selenomethionine, notably SAM depletion and increased SAM to SAH ratio by MSA, which implicates altered epigenetic regulation.


Assuntos
S-Adenosil-Homocisteína , S-Adenosilmetionina , Proteínas Adaptadoras de Transdução de Sinal , Animais , Epigênese Genética , Análise de Fourier , Isótopos , Espectrometria de Massas , Metabolômica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA