RESUMO
Supramolecular soft crystals are periodic structures that are formed by the hierarchical assembly of complex constituents, and occur in a broad variety of 'soft-matter' systems1. Such soft crystals exhibit many of the basic features (such as three-dimensional lattices and space groups) and properties (such as band structure and wave propagation) of their 'hard-matter' atomic solid counterparts, owing to the generic symmetry-based principles that underlie both2,3. 'Mesoatomic' building blocks of soft-matter crystals consist of groups of molecules, whose sub-unit-cell configurations couple strongly to supra-unit-scale symmetry. As yet, high-fidelity experimental techniques for characterizing the detailed local structure of soft matter and, in particular, for quantifying the effects of multiscale reconfigurability are quite limited. Here, by applying slice-and-view microscopy to reconstruct the micrometre-scale domain morphology of a solution-cast block copolymer double gyroid over large specimen volumes, we unambiguously characterize its supra-unit and sub-unit cell morphology. Our multiscale analysis reveals a qualitative and underappreciated distinction between this double-gyroid soft crystal and hard crystals in terms of their structural relaxations in response to forces-namely a non-affine mode of sub-unit-cell symmetry breaking that is coherently maintained over large multicell dimensions. Subject to inevitable stresses during crystal growth, the relatively soft strut lengths and diameters of the double-gyroid network can easily accommodate deformation, while the angular geometry is stiff, maintaining local correlations even under strong symmetry-breaking distortions. These features contrast sharply with the rigid lengths and bendable angles of hard crystals.
RESUMO
BACKGROUND: The awareness of the association between the gut microbiota and human intelligence levels is increasing, but the findings are inconsistent. Furthermore, few research have explored the potential role of gut microbial metabolites in this association. This study aimed to investigate the associations of the gut microbiota and fecal metabolome with intelligence quotient (IQ) in preschoolers. METHODS: The 16 S rRNA sequencing and widely targeted metabolomics were applied to analyze the gut microbiota and fecal metabolites of 150 children aged 3-6 years. The Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) was used to assess the cognitive competence. RESULTS: The observed species index, gut microbiome health index, and microbial dysbiosis index presented significant differences between children with full-scale IQ (FSIQ) below the borderline (G1) and those with average or above-average (all P < 0.05). The abundance of Acinetobacter, Blautia, Faecalibacterium, Prevotella_9, Subdoligranulum, Collinsella, Dialister, Holdemanella, and Methanobrevibacter was significantly associated with preschooler's WPPSI-IV scores (P < 0.05). In all, 87 differential metabolites were identified, mainly including amino acid and its metabolites, fatty acyl, and benzene and substituted derivatives. The differential fecal metabolites carnitine C20:1-OH, 4-hydroxydebrisoquine, pantothenol, creatine, N,N-bis(2-hydroxyethyl) dodecanamide, FFA(20:5), zerumbone, (R)-(-)-2-phenylpropionic acid, M-toluene acetic acid, trans-cinnamaldehyde, isonicotinic acid, val-arg, traumatin, and 3-methyl-4-hydroxybenzaldehyde were significantly associated with the preschooler's WPPSI-IV scores (P < 0.05). The combination of Acinetobacter, Isonicotinic acid, and 3-methyl-4-hydroxybenzaldehydenine may demonstrate increased discriminatory power for preschoolers in G1. CONCLUSION: This study reveals a potential association between gut microbiome and metabolites with IQ in preschoolers, providing new directions for future research and practical applications. However, due to limitations such as the small sample size, unclear causality, and the complexity of metabolites, more validation studies are still needed to further elucidate the mechanisms and stability of these associations.
Assuntos
Disbiose , Fezes , Microbioma Gastrointestinal , Inteligência , Humanos , Fezes/microbiologia , Fezes/química , Pré-Escolar , Masculino , Feminino , Criança , Disbiose/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Metaboloma , Testes de Inteligência , Metabolômica/métodosRESUMO
BACKGROUND: While prenatal exposure to alkylphenols (APs) has been demonstrated to be associated with neurodevelopmental impairments in animals, the evidence from epidemiological studies remains limited and inconclusive. This study aimed to explore the link between AP exposure during pregnancy and the intelligence quotient (IQ) of preschool children. METHODS: A total of 221 mother-child pairs from the Guangxi Zhuang Birth Cohort were recruited. Nonylphenol (NP), 4-tert-octylphenol (4-T-OP), 4-n-nonylphenol (4-N-NP), and 4-n-octylphenol were measured in maternal serum in early pregnancy. Childhood IQ was evaluated by the Fourth Edition of Wechsler Preschool and Primary Scale of the Intelligence at 3 to 6 years of age. The impact of APs on childhood IQ were evaluated by generalized linear models (GLMs), restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR). RESULTS: In GLMs, prenatal exposure to NP and the second tertile of 4-T-OP exhibited an inverse association with full-scale IQ (FSIQ) (ß = -2.38; 95% CI: -4.59, -0.16) and working memory index (WMI) (ß = -5.24; 95% CI: -9.58, -0.89), respectively. Prenatal exposure to the third tertile of 4-N-NP showed a positive association with the fluid reasoning index (ß = 4.95; 95% CI: 1.14, 8.77) in total children, as well as in girls when stratified by sex. A U-shaped relationship between maternal 4-T-OP and WMI was noted in total children and girls by RCS (all P nonlinear < 0.05). The combined effect primarily driven by NP, of maternal AP mixtures at concentrations above the 50th percentile exhibited an inverse trend on FSIQ in total children and girls in BKMR. CONCLUSIONS: Prenatal exposure to various APs affects IQ in preschool children, and there may be nonmonotonic and sex-specific effects. Further investigation across the population is required to elucidate the potential neurotoxic effects of APs.
Assuntos
Fenóis , Efeitos Tardios da Exposição Pré-Natal , Masculino , Gravidez , Feminino , Humanos , Pré-Escolar , Criança , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Teorema de Bayes , China , Testes de Inteligência , InteligênciaRESUMO
PURPOSE: This study used three-dimensional (3D) modelling to investigate scleral profiles in myopic eyes and compare them with emmetropic eyes. METHODS: In this prospective observational study, the eyes of 151 participants were analysed using the corneoscleral profile module (CSP) of the Pentacam HR. Non-rotationally symmetrical ellipsoids were fitted to the anterior scleral sagittal height. Three radii were analysed, namely the nasal-temporal (Rx), superior-inferior (Ry) and anterior-posterior (Rz) orientations. Additionally, the area index (AI) and aspherical parameters (Qxy, Qxz and Qyz) of the anterior sclera-fitted ellipsoid (ASFE) were quantified. RESULTS: The findings showed an increase in Rx (-0.349 mm/D), Ry (-0.373 mm/D), Rz (-1.232 mm/D) and AI (-36.165 mm2 /D) with increasing myopia. From emmetropia to high myopia, the vertical and horizontal planes of the anterior sclera became increasingly prolate (emmetropia, Qxz: 0.02, Qyz: 0.01; low myopia, Qxz: -0.28, Qyz: -0.28; high myopia, Qxz: -0.41, Qyz: -0.43). There were no significant differences in the coronal plane across the three groups (H = 2.65, p = 0.27). The anterior scleral shape of high myopes in the horizontal and vertical planes was more prolate than that of emmetropes and low myopes (Qxz, high myopes vs. low myopes: p = 0.03, high myopes vs. emmetropes: p < 0.001; Qyz, high myopes vs. low myopes: p = 0.04, high myopes vs. emmetropes: p < 0.001). CONCLUSIONS: As the degree of myopia increased, non-uniform anterior scleral enlargement was observed. These findings provide a better understanding of the anterior segment with varying degrees of myopia.
Assuntos
Miopia , Fosmet , Humanos , Esclera , Miopia/diagnóstico , Emetropia , Estudos ProspectivosRESUMO
Exposure to bisphenols can affect bone mineral density (BMD) in animals and humans. However, the effects of maternal exposure to bisphenols during pregnancy on bone health in preschool children remain unknown. We aimed to assess the effects of prenatal exposure to single and multiple bisphenols on bone health in preschool children. A total of 230 mother-child pairs were included in this study. Generalized linear regression, restricted cubic spline (RCS), principal component analysis (PCA), and Bayesian kernel machine regression (BKMR) were utilized to assess the relationship between bisphenol levels and bone health in preschool children. Each natural log (Ln) unit increase in tetrabromobisphenol A was related to a 0.007 m/s (95 % CI: -0.015, 0.000) decrease in Ln-transformed speed of sound (SOS) among girls. Decreased BMD Z scores in preschool children were found only in the high bisphenol S exposure group (ß = -0.568; 95 % CI: -1.087, -0.050) in boys. The risk of low BMD (BMDL) was significantly higher in the middle-exposure group (OR = 4.695; 95 % CI: 1.143, 24.381) and high-exposure group of BPS (OR = 6.165, 95 % CI: 1.445, 33.789) compared with the low-exposure group in boys. In girls, the risk of BMDL decreased with increasing bisphenol A concentration (OR = 0.413, 95 % CI: 0.215, 0.721). RCS analysis revealed a U-shaped nonlinear correlation between BPB concentration and BMDL in girls (P-overall = 0.011, P-nonlinear = 0.009). In PCA, a U-shaped dose-response relationship was found between PC2 and the risk of BMDL (P-overall = 0.048, P-nonlinear = 0.032), and a significant association was only noted in girls when stratified by sex. The BKMR model revealed a horizontal S-shaped curve relationship between bisphenol mixtures and BMDL in girls. The results indicated that prenatal exposure to single and mixed bisphenols can affect BMD in preschool children, exerting nonmonotonic and child sex-specific effects.
Assuntos
Densidade Óssea , Efeitos Tardios da Exposição Pré-Natal , Animais , Masculino , Feminino , Gravidez , Humanos , Pré-Escolar , Teorema de Bayes , Estudos ProspectivosRESUMO
With the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Nanotecnologia , Nanoestruturas/uso terapêutico , Antineoplásicos/uso terapêuticoRESUMO
We report the dramatic triggering of structural order in a Zr(IV)-based metal-organic framework (MOF) through docking of HgCl2 guests. Although as-made crystals were unsuitable for single crystal X-ray diffraction (SCXRD), with diffraction limited to low angles well below atomic resolution due to intrinsic structural disorder, permeation of HgCl2 not only leaves the crystals intact but also resulted in fully resolved backbone as well as thioether side groups. The crystal structure revealed elaborate HgCl2-thioether aggregates nested within the host octahedra to form a hierarchical, multifunctional net. The chelating thioether groups also promote Hg(II) removal from water, while the trapped Hg(II) can be easily extricated by 2-mercaptoethanol to reactivate the MOF sorbent.
RESUMO
Purpose: This study aims to explore the variations in external and internal loads on a quarter-by-quarter basis among professional Chinese basketball players. It emphasizes the crucial impact of these variations on optimizing athletic performance and match strategies. Method: An observational longitudinal study design was employed, involving sixteen male players from the National Basketball League during the 2024 season in China. Data collection was facilitated through the use of Catapult S7 devices for measuring external loads and session ratings of perceived exertion (sRPE) for assessing internal loads. Linear mixed-effects models were utilized for the statistical analysis to identify differences in workload intensities across game quarters based on player positions. The Pearson correlation coefficient was used to examine the relationship between external and internal load throughout the game. Results: The analysis uncovered significant positional differences in workload intensities across game quarters. Guards were found to have a higher PlayerLoad™ (PL) per minute in the first quarter, while centers demonstrated an increase in high-intensity accelerations and jumps in the fourth quarter. Furthermore, a significant moderate correlation between sRPE and PL was observed across all game quarters, indicating a link between physical exertion and athletes' perceptions of effort. Conclusion: The study offers new insights into the dynamic physical demands faced by basketball players and the importance of using both objective and subjective measures for a comprehensive assessment of athlete performance and wellbeing. The findings underscore the interconnectedness of physical exertion and athlete perception, providing a foundation for future research and practical applications in the field of basketball science.
RESUMO
OBJECTIVE: This study aimed to investigate the impact of lower limb alignment abnormalities, specifically physiological knee valgus, on the functional recovery outcomes of athletes with meniscal injuries. It also examined the factors influencing these abnormalities to provide scientific evidence for treatment and rehabilitation of related sports injuries. METHODS: We conducted a retrospective study of 118 athletes from Guizhou Normal University, who were divided into two groups based on the presence or absence of lower limb alignment abnormalities. The Simple group comprised athletes with isolated meniscal injuries, while the Combined group included athletes with meniscal injuries and concurrent lower limb alignment abnormalities. We assessed the functional status of both groups and analyzed factors influencing lower limb alignment abnormalities. RESULTS: Of the 118 athletes, 46 (38.98%) exhibited lower limb alignment abnormalities, and 72 (61.02%) did not. No significant differences in general characteristics were found between the groups (all P > 0.05). The Combined group displayed higher Visual Analog Scale (VAS) scores and Functional Performance Test (FPT) results (coordinated contraction, shuttle run, CarioCa) compared to the Simple group (P < 0.05). Conversely, joint range of motion (ROM), knee muscle strength (flexors), and International Knee Documentation Committee (IKDC) scores were lower in the Combined group (all P < 0.05). Multivariate logistic regression analysis identified active ROM < 105.32°, passive ROM < 101.66°, and knee muscle strength (flexors) < 84.41 N as risk factors for lower limb alignment abnormalities (P < 0.05), while FPT acted as a protective factor (P < 0.05). The combined testing model demonstrated higher predictive efficacy (AUC = 0.903, 95% CI: 0.852-0.955, P < 0.001). CONCLUSION: Lower limb alignment abnormalities significantly affect the functional recovery outcomes of athletes with meniscal injuries. Factors such as ROM, knee muscle strength, and IKDC score may pose risks for these abnormalities, whereas FPT can provide protective benefits. Timely detection and correction of lower limb alignment abnormalities during the rehabilitation process from meniscal injuries are crucial to enhance recovery and improve prognosis.
RESUMO
Recent epidemiological research suggests a possible negative correlation between Helicobacter pylori infection and inflammatory bowel disease (IBD). However, conflicting studies have provided unclear evidence regarding these causal relationships. Therefore, recommending specific prevention and treatment strategies for H. pylori infection and IBD is challenging. We used various antibodies (anti-H. pylori IgG, VacA, and GroEl) related to H. pylori infection as indicators. We acquired relevant genetic variants from public databases within the Genome-wide Association Studies (GWAS) dataset using IBDs tool variables from 2 different GWAS datasets. We thoroughly examined the data and screened for IVs that fulfilled these criteria. Subsequently, Bidirectional Mendelian randomization (MR) was conducted to predict the potential causality between the 2. To ensure the accuracy and robustness of our results, we conducted a series of sensitivity analyses. Based on our comprehensive MR analysis, no potential causal relationship was observed between H. pylori infection and IBD. Across various methodologies, including IVW, MR-Egger, and weighted median, our findings showed P valuesâ >â .05. The only exception was observed in the reverse MR analysis using the MR-Egger method, which yielded a P value ofâ <â .05. However, because the IVW method is considered the most statistically significant method for MR, and its P value wasâ >â .05, we do not believe that a potential causal relationship exists between them. Our sensitivity analysis did not suggest significant horizontal pleiotropism. Although heterogeneity was detected in the analysis of IBD (IIBDGC source) versus H. pylori GroEL antibody levels (MR-Egger, Qpâ =â 0.038; IVW, Qpâ =â 0.043), the results remained reliable because we selected IVW as a random-effects model in our MR analysis method. Based on our MR research, no direct correlation was observed between H. pylori infection and IBD risk. This implies that eradicating H. pylori may not provide substantial benefits in preventing or treating regional IBD, and vice versa. Nevertheless, the use of H. pylori serological index substitution has limitations, and further research using histological diagnosis and additional MR studies is required to comprehensively assess the link between H. pylori infection and IBD.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Doenças Inflamatórias Intestinais , Humanos , Estudo de Associação Genômica Ampla , Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/genética , Análise da Randomização Mendeliana , Anticorpos Antibacterianos , Doenças Inflamatórias Intestinais/genéticaRESUMO
Introduction: Numerous observational studies have indicated that smoking is a substantial risk factor for esophageal cancer. However, there is a shortage of research that delves into the specific causal relationship and potential mediators between the two. Our study aims to validate the correlation between smoking-related traits and esophageal cancer while exploring the possible mediating effects of immune factors. Methods: Initially, we conducted bidirectional univariate Mendelian Randomization (MR) analyses to forecast the causal effects linking smoking-related traits and esophageal cancer. Subsequently, we employed a two-step MR analysis to scrutinize immune cell phenotypes that could mediate these effects. Finally, the coefficient product method was employed to determine the precise mediating impact. Additionally, we have refined our sensitivity analysis to ensure the reliability of the outcomes. Results: After analysis, Smoking status: Never had a significant negative association with the incidence of esophageal cancer (inverse-variance weighted (IVW) method, p=1.82e-05, OR=0.10, 95%CI=0.04~0.29). Ever smoked (IVW, p=1.49e-02, OR=4.31, 95%CI=1.33~13.94) and Current tobacco smoking (IVW, p=1.49e-02, OR=4.31, 95%CI=1.33~13.94) showed the promoting effect on the pathogenesis of esophageal cancer. Through further examination, researchers discovered 21 immune cell phenotypes that have a causal relationship with esophageal cancer. After careful screening, two immune cell phenotypes were found to have potential mediating effects. In particular, it was observed that in the case of the preventive effect of Smoking status: Never on esophageal cancer, the absolute count of CD62L plasmacytoid dendritic cells mediated a reduction of 4.21%, while the mediating effect of CD27 in CD20-CD38-B cells was -4.12%. In addition, sensitivity analyses did not reveal significant heterogeneity or level pleiotropy. Conclusion: The study provides new evidence for the causal relationship between smoking-related features and esophageal cancer and proposes immune factors with potential mediating effects. However, this finding needs to be further demonstrated by more extensive clinical studies.
Assuntos
Neoplasias Esofágicas , Fumar , Humanos , Fumar/efeitos adversos , Reprodutibilidade dos Testes , Fumar Tabaco , Neoplasias Esofágicas/genética , Fenótipo , Fatores ImunológicosRESUMO
Vegetation degradation in arid and semi-arid regions reduces plant C inputs to the soil, which can impede soil nutrient cycling because of the limited C source for microbial metabolism. However, whether vegetation degradation aggravates microbial nutrient limitation in degraded ecosystems in arid and semi-arid regions is not fully understood. Here, we investigated changes in soil enzyme activity and microbial nutrient limitation along a well-documented gradient of degraded seabuckthorn (Hippophae rhamnoides L.) (slightly degraded, canopy dieback <25 %, moderately degraded, canopy dieback 25 %-75 %, and severely degraded, canopy dieback >75 %) in Liang (long ridge) and gully channel locations in the Pisha Sandstone region of the Loess Plateau, China. We found that as the magnitude of seabuckthorn degradation increased, activities of C-acquiring enzymes and ratios of C:N and C:P enzymes (0.54-0.80 and 0.52-0.77, respectively) increased whereas the N:P enzyme ratio (0.93-0.99) decreased. Stoichiometric modelling further indicated that microorganisms were limited by soil C and P (vector angle >45°) in the seabuckthorn plantation region, and the degradation of seabuckthorn plantation aggravated microbial C and P limitations. Partial least squares path modelling revealed that seabuckthorn degradation (canopy dieback) was the main factor explaining microbial C limitation variations, while soil physicochemical properties (pH and soil moisture content) and understory plant parameters (litter biomass) were the major factors underlying microbial P limitation of long ridge and gully channel formations, respectively. Our findings highlight synergistic changes between aboveground and belowground processes, suggesting an unexpected negative effect of vegetation degradation on soil microbial community and nutrient cycling. These insights offer a direction for the development of plantation nutrients management strategies in semi-arid and arid areas.
Assuntos
Hippophae , Fósforo , Microbiologia do Solo , Solo , China , Fósforo/análise , Fósforo/metabolismo , Solo/química , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Nitrogênio/análiseRESUMO
INTRODUCTION: Major depressive disorder (MDD), the second leading cause of disability globally, is considered to be associated with a consequent deterioration in the quality of life and can lead to a major economic burden on medical service and suicide-related costs. Previous research has shown that acupuncture may be beneficial for treating MDD. However, there is a lack of rigorous evidence from previous studies comparing acupuncture with antidepressant medications. This study aims to assess the therapeutic potential of acupuncture in the management of depressive disorders. METHODS AND ANALYSIS: A multicentre, randomised, participant-blind, sham-controlled, 2×2 factorial clinical trial, Acupuncture and Escitalopram for Treating Major Depression Clinical Study, aims to compare the efficacy of acupuncture versus escitalopram in treating depression. This study will be conducted at three hospitals in China, enrolling 260 patients with moderate-to-severe major depression, as defined by DSM-5 criteria and Hamilton Depression Rating Scale (HDRS-17) Scores above 17. Participants will be randomly assigned in equal proportions to one of four groups (acupuncture/escitalopram, sham acupuncture/escitalopram, acupuncture/placebo and sham acupuncture/placebo) and undergo 30 sessions across 10 weeks. The primary outcome is change in HDRS-17 Score and secondary outcomes include BDI, Clinical Global Impression, Generalised Anxiety Disorder-7 and Mini-Mental State Examination Scores, alongside potential biological markers. ETHICS AND DISSEMINATION: Ethical approval for the study was granted by the Ethics Committees of the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (2023-7th-HIRB-020), Shanghai Mental Health Centre (2022-86) and Shanghai Pudong New Area Hospital of Traditional Chinese Medicine (2023-003). Informed consent will be obtained from all participants. The study's findings are intended for publication in a scholarly journal. TRIAL REGISTRATION: NCT05901571.
Assuntos
Terapia por Acupuntura , Transtorno Depressivo Maior , Escitalopram , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/tratamento farmacológico , Terapia por Acupuntura/métodos , Adulto , Escitalopram/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , China , Resultado do Tratamento , Estudos Multicêntricos como Assunto , Terapia Combinada , Qualidade de Vida , Adulto Jovem , Adolescente , Antidepressivos de Segunda Geração/uso terapêutico , Citalopram/uso terapêuticoRESUMO
The accelerated formation of lithium dendrites has considerably impeded the advancement and practical deployment of all-solid-state lithium metal batteries (ASSLMBs). In this study, a soft carbon (SC)-Li3N interface layer was developed with both ionic and electronic conductivity, for which the in situ lithiation reaction not only lithiated SC into LiC6 with good electronic/ionic conductivity but also successfully transformed the mixed-phase Li3N into pure-phase ß-Li3N with a high ionic conductivity/ion diffusion coefficient and stability to lithium metal. The mixed conductive interface layer facilitates fast Li+ transport at the interface and induces the homogeneous deposition of lithium metal inside it. This effectively inhibits the formation of lithium dendrites and greatly improves the performance of the ASSLMB. The ASSLMB assembled with the SC-Li3N interface layer exhibits high areal capacity (15 mA h cm-2), high current density (7.5 mA cm-2), and long cycle life (6000 cycles). These results indicate that this interface layer has great potential for practical applications in high-energy-density ASSLMBs.
RESUMO
BACKGROUND: Exposure to metals during pregnancy can potentially influence blood pressure (BP) in children, but few studies have examined the mixed effects of prenatal metal exposure on childhood BP. We aimed to assess the individual and combined effects of prenatal metal and metalloid exposure on BP in preschool children. METHODS: A total of 217 mother-child pairs were selected from the Zhuang Birth Cohort in Guangxi, China. The maternal plasma concentrations of 20 metals [e.g. lead (Pb), rubidium (Rb), cesium (Cs), and zinc (Zn)] in early pregnancy were measured by inductively coupled plasmamass spectrometry. Childhood BP was measured in August 2021. The effects of prenatal metal exposure on childhood BP were explored by generalized linear models, restricted cubic spline and Bayesian kernel machine regression (BKMR) models. RESULTS: In total children, each unit increase in the log10-transformed maternal Rb concentration was associated with a 10.82-mmHg decrease (95% CI: -19.40, -2.24) in childhood diastolic BP (DBP), and each unit increase in the log10-transformed maternal Cs and Zn concentrations was associated with a 9.67-mmHg (95% CI: -16.72, -2.61) and 4.37-mmHg (95% CI: -8.68, -0.062) decrease in childhood pulse pressure (PP), respectively. The log10-transformed Rb and Cs concentrations were linearly related to DBP (P nonlinear=0.603) and PP (P nonlinear=0.962), respectively. Furthermore, an inverse association was observed between the log10-transformed Cs concentration and PP (ß =-12.18; 95% CI: -22.82, -1.54) in girls, and between the log10-transformed Rb concentration and DBP (ß =-12.54; 95% CI: -23.87, -1.21) in boys, while there was an increasing association between the log10-transformed Pb concentration and DBP there was an increasing in boys (ß =6.06; 95% CI: 0.36, 11.77). Additionally, a U-shaped relationship was observed between the log10-transformed Pb concentration and SBP (P nonlinear=0.015) and DBP (P nonlinear=0.041) in boys. Although there was no statistically signiffcant difference, there was an inverse trend in the combined effect of maternal metal mixture exposure on childhood BP among both the total children and girls in BKMR. CONCLUSIONS: Prenatal exposure to both individual and mixtures of metals and metalloids influences BP in preschool children, potentially leading to nonlinear and sex-specific effects.
Assuntos
Pressão Sanguínea , Exposição Materna , Metaloides , Metais , Humanos , Feminino , Pressão Sanguínea/efeitos dos fármacos , Pré-Escolar , Gravidez , Exposição Materna/efeitos adversos , Masculino , Metaloides/sangue , Metais/sangue , Adulto , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Chumbo/sangue , China , Zinco/sangue , Teorema de BayesRESUMO
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Assuntos
Nanoestruturas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Imunoterapia , Microambiente Tumoral , Neoplasias/tratamento farmacológicoRESUMO
Background: ARLs, which are a class of small GTP-binding proteins, play a crucial role in facilitating tumor tumorigenesis and development. ARL4C, a vital member of the ARLs family, has been implicated in the progression of tumors, metastatic dissemination, and development of resistance to therapeutic drugs. Nevertheless, the precise functional mechanisms of ARL4C concerning tumor prognosis and immunotherapy drug susceptibility remain elusive. Methods: By combining the GTEx and TCGA databases, the presence of ARL4C was examined in 33 various types of cancer. Immunohistochemistry and immunofluorescence staining techniques were utilized to confirm the expression of ARL4C in particular tumor tissues. Furthermore, the ESTIMATE algorithm and TIMER2.0 database were utilized to analyze the tumor microenvironment and immune infiltration associated with ARL4C. The TISCH platform facilitated the utilization of single-cell RNA-seq datasets for further analysis. ARL4C-related immune escape was investigated using the TISMO tool. Lastly, drug sensitivity analysis was conducted to assess the sensitivity of different types of tumors to compounds based on the varying levels of ARL4C expression. Results: The study found that ARL4C was highly expressed in 23 different types of cancer. Moreover, the presence of high ARL4C expression was found to be associated with a poor prognosis in BLCA, COAD, KIRP, LGG, and UCEC. Notably, ARL4C was also expressed in immune cells, and its high expression was found to be correlated with cancer immune activation. Most importantly, the drug sensitivity analysis revealed a positive correlation between ARL4C expression and the heightened sensitivity of tumors to Staurosporine, Midostaurin, and Nelarabine. Conclusion: The findings from our study indicate that the expression level of ARL4C may exert an influence on cancer development, prognosis, and susceptibility to immunotherapy drugs. In addition, the involvement of ARL4C in the tumor immune microenvironment has expanded the concept of ARL4C-targeted immunotherapy.
RESUMO
The cisterna magna has been defined as the space between the inferior margin of the cerebellar vermis to the level of the foramen magnum, while an enlarged dorsal subarachnoid space at the occipito-cervical junction extending from the foramen magnum to the upper border of the axis (C2) is still ignored. Recently, the myodural bridge complex is proved to drive the cerebral spinal fluid flowing via this region, we therefore introduce the "occipito-atlantal cistern (OAC)" to better describe the subarachnoid space and provide a detailed rationale. The present study utilized several methods, including MRI, gross anatomical dissection, P45 sheet plastination, and three-dimensional visualization. OAC was observed to be an enlarge subarachnoid space, extending from the foramen magnum to the level of the C2. In the median sagittal plane, OAC was a funnel shape and its anteroposterior dimensions were 15.92 ± 4.20 mm at the level of the C0, 4.49 ± 1.25 mm at the level of the posterior arch of the C1, and 2.88 ± 0.77 mm at the level of the arch of the C2, respectively. In the median sagittal plane, the spino-dural angle of the OAC was calculated to be 35.10 ± 6.91°, and the area of OAC was calculated to be 232.28 ± 71.02 mm2. The present study provides OAC is a subarachnoid space independent from the cisterna magna. Because of its distinctive anatomy, as well as theoretical and clinical significance, OAC deserves its own name.