Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 615(7952): 526-534, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890225

RESUMO

The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.


Assuntos
Nucléolo Celular , Exossomos , Precursores de RNA , Processamento Pós-Transcricional do RNA , RNA Ribossômico , Peixe-Zebra , Animais , Camundongos , Nucléolo Celular/metabolismo , Desenvolvimento Embrionário , Exossomos/metabolismo , Cabeça/anormalidades , Microscopia , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Nat Methods ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965442

RESUMO

Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.

3.
Mol Cell ; 76(6): 981-997.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31757757

RESUMO

Visualizing the location and dynamics of RNAs in live cells is key to understanding their function. Here, we identify two endonuclease-deficient, single-component programmable RNA-guided and RNA-targeting Cas13 RNases (dCas13s) that allow robust real-time imaging and tracking of RNAs in live cells, even when using single 20- to 27-nt-long guide RNAs. Compared to the aptamer-based MS2-MCP strategy, an optimized dCas13 system is user friendly, does not require genetic manipulation, and achieves comparable RNA-labeling efficiency. We demonstrate that the dCas13 system is capable of labeling NEAT1, SatIII, MUC4, and GCN4 RNAs and allows the study of paraspeckle-associated NEAT1 dynamics. Applying orthogonal dCas13 proteins or combining dCas13 and MS2-MCP allows dual-color imaging of RNAs in single cells. Further combination of dCas13 and dCas9 systems allows simultaneous visualization of genomic DNA and RNA transcripts in living cells.


Assuntos
Imagem Molecular/métodos , RNA/fisiologia , Imagem Individual de Molécula/métodos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Mucina-4 , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Longo não Codificante , Ribonucleases/genética , Ribonucleases/metabolismo , Coloração e Rotulagem/métodos
4.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31540874

RESUMO

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Assuntos
Nucléolo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Transporte Ativo do Núcleo Celular , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , Precursores de RNA/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura
5.
Nat Methods ; 18(1): 51-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288960

RESUMO

Circular RNAs (circRNAs) produced from back-spliced exons are widely expressed, but individual circRNA functions remain poorly understood owing to the lack of adequate methods for distinguishing circRNAs from cognate messenger RNAs with overlapping exons. Here, we report that CRISPR-RfxCas13d can effectively discriminate circRNAs from mRNAs by using guide RNAs targeting sequences spanning back-splicing junction (BSJ) sites featured in RNA circles. Using a lentiviral library that targets sequences across BSJ sites of highly expressed human circRNAs, we show that a group of circRNAs are important for cell growth mostly in a cell-type-specific manner and that a common oncogenic circRNA, circFAM120A, promotes cell proliferation by preventing the mRNA for family with sequence similarity 120A (FAM120A) from binding the translation inhibitor IGF2BP2. Further application of RfxCas13d-BSJ-gRNA screening has uncovered circMan1a2, which has regulatory potential in mouse embryo preimplantation development. Together, these results establish CRISPR-RfxCas13d as a useful tool for the discovery and functional study of circRNAs at both individual and large-scale levels.


Assuntos
Sistemas CRISPR-Cas , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
RNA ; 27(12): 1427-1440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34526358

RESUMO

Although long noncoding RNAs (lncRNAs) are generally expressed at low levels, emerging evidence has revealed that many play important roles in gene regulation by a variety of mechanisms as they engage with proteins. Given that the abundance of proteins often greatly exceeds that of their interacting lncRNAs, quantification of the relative abundance, or even the exact stoichiometry in some cases, within lncRNA-protein complexes is helpful for understanding of the mechanism(s) of action of lncRNAs. We discuss methods used to examine lncRNA and protein expression at the single cell, subcellular, and suborganelle levels, the average and local lncRNA concentration in cells, as well as how lncRNAs can modulate the functions of their interacting proteins even at a low stoichiometric concentration.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
7.
RNA Biol ; 20(1): 419-430, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405372

RESUMO

The genetic disorder Prader-Willi syndrome (PWS) is mainly caused by the loss of multiple paternally expressed genes in chromosome 15q11-q13 (the PWS region). Early diagnosis of PWS is essential for timely treatment, leading to effectively easing some clinical symptoms. Molecular approaches for PWS diagnosis at the DNA level are available, but the diagnosis of PWS at the RNA level has been limited. Here, we show that a cluster of paternally transcribed snoRNA-ended long noncoding RNAs (sno-lncRNAs, sno-lncRNA1-5) derived from the SNORD116 locus in the PWS region can serve as diagnostic markers. In particular, quantification analysis has revealed that 6,000 copies of sno-lncRNA3 are present in 1 µL whole blood samples from non-PWS individuals. sno-lncRNA3 is absent in all examined whole blood samples of 8 PWS individuals compared to 42 non-PWS individuals and dried blood samples of 35 PWS individuals compared to 24 non-PWS individuals. Further developing a new CRISPR-MhdCas13c system for RNA detection with a sensitivity of 10 molecules per µL has ensured sno-lncRNA3 detection in non-PWS, but not PWS individuals. Together, we suggest that the absence of sno-lncRNA3 represents a potential marker for PWS diagnosis that can be detected by both RT-qPCR and CRISPR-MhdCas13c systems with only microlitre amount of blood samples. Such an RNA-based sensitive and convenient approach may facilitate the early detection of PWS.


Assuntos
Síndrome de Prader-Willi , RNA Longo não Codificante , Humanos , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética
9.
Genome Biol ; 24(1): 15, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658633

RESUMO

BACKGROUND: Understanding gene transcription and mRNA-protein (mRNP) dynamics in single cells in a multicellular organism has been challenging. The catalytically dead CRISPR-Cas13 (dCas13) system has been used to visualize RNAs in live cells without genetic manipulation. We optimize this system to track developmentally expressed mRNAs in zebrafish embryos and to understand features of endogenous transcription kinetics and mRNP export. RESULTS: We report that zygotic microinjection of purified CRISPR-dCas13-fluorescent proteins and modified guide RNAs allows single- and dual-color tracking of developmentally expressed mRNAs in zebrafish embryos from zygotic genome activation (ZGA) until early segmentation period without genetic manipulation. Using this approach, we uncover non-synchronized de novo transcription between inter-alleles, synchronized post-mitotic re-activation in pairs of alleles, and transcriptional memory as an extrinsic noise that potentially contributes to synchronized post-mitotic re-activation. We also reveal rapid dCas13-engaged mRNP movement in the nucleus with a corralled and diffusive motion, but a wide varying range of rate-limiting mRNP export, which can be shortened by Alyref and Nxf1 overexpression. CONCLUSIONS: This optimized dCas13-based toolkit enables robust spatial-temporal tracking of endogenous mRNAs and uncovers features of transcription and mRNP motion, providing a powerful toolkit for endogenous RNA visualization in a multicellular developmental organism.


Assuntos
RNA , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Transporte Ativo do Núcleo Celular , RNA/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Curr Opin Genet Dev ; 72: 128-137, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933201

RESUMO

Long non-coding RNAs (lncRNAs) associate with RNA-binding proteins (RBPs) to form lncRNA-protein complexes that act in a wide range of biological processes. Understanding the molecular mechanism of how a lncRNA-protein complex is assembled and regulated is key for their cellular functions. In this mini-review, we outline molecular methods used to identify lncRNA-protein interactions from large-scale to individual levels using bulk cells as well as those recently developed imaging and single-molecule approaches that are capable of visualizing RNA-protein assemblies in single cells and in real-time. Focusing on the latter group of approaches, we discuss their applications and limitations, which nevertheless have enabled quantification and comprehensive dissection of RNA-protein interactions possible.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Cell Insight ; 1(4): 100044, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37192858

RESUMO

Visualizing RNA dynamics is important for understanding RNA function. Catalytically dead (d) CRISPR-Cas13 systems have been established to image and track RNAs in living cells, but efficient dCas13 for RNA imaging is still limited. Here, we analyzed metagenomic and bacterial genomic databases to comprehensively screen Cas13 homologies for their RNA labeling capabilities in living mammalian cells. Among eight previously unreported dCas13 proteins that can be used for RNA labeling, dHgm4Cas13b and dMisCas13b displayed comparable, if not higher, efficiencies to the best-known ones when targeting endogenous MUC4 and NEAT1_2 by single guide (g) RNAs. Further examination of the labeling robustness of different dCas13 systems using the GCN4 repeats revealed that a minimum of 12 GCN4 repeats was required for dHgm4Cas13b and dMisCas13b imaging at the single RNA molecule level, while >24 GCN4 repeats were required for reported dLwaCas13a, dRfxCas13d and dPguCas13b. Importantly, by silencing pre-crRNA processing activity of dMisCas13b (ddMisCas13b) and further incorporating RNA aptamers including PP7, MS2, Pepper or BoxB to individual gRNAs, a CRISPRpalette system was developed to successfully achieve multi-color RNA visualization in living cells.

12.
Science ; 373(6554): 547-555, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326237

RESUMO

RNA polymerase I (Pol I) transcription takes place at the border of the fibrillar center (FC) and the dense fibrillar component (DFC) in the nucleolus. Here, we report that individual spherical FC/DFC units are coated by the DEAD-box RNA helicase DDX21 in human cells. The long noncoding RNA (lncRNA) SLERT binds to DDX21 RecA domains to promote DDX21 to adopt a closed conformation at a substoichiometric ratio through a molecular chaperone-like mechanism resulting in the formation of hypomultimerized and loose DDX21 clusters that coat DFCs, which is required for proper FC/DFC liquidity and Pol I processivity. Our results suggest that SLERT is an RNA regulator that controls the biophysical properties of FC/DFCs and thus ribosomal RNA production.


Assuntos
Nucléolo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Polimerase I/metabolismo , RNA Longo não Codificante/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/química , DNA Ribossômico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Transcrição Gênica
13.
STAR Protoc ; 1(1): 100037, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-33111085

RESUMO

This protocol uses endonuclease-dead, programmable RNA-guided RNA-targeting Cas13 RNases (d)Cas13 proteins fused with fluorescent proteins to visualize and track RNA dynamics in live cells. This protocol details several aspects of the procedure, including gRNA design, fluorescent protein selection, nuclear localization signal adjustment, raw data analysis, operation steps, and extended optional applications that have been successfully applied in the visualization of NEAT1, SatIII, MUC4, and GCN4 RNAs. For complete information on the use and execution of this protocol, please refer to Yang et al. (2019).


Assuntos
Sistemas CRISPR-Cas/genética , RNA , Ribonucleases/metabolismo , Imagem Individual de Molécula/métodos , Células HeLa , Humanos , RNA/análise , RNA/genética , RNA/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA