Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116042

RESUMO

Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) holds great potential to revolutionize ultratrace quantitative analysis. However, achieving quantitative SM-SERS is challenging because of strong intensity fluctuation and blinking characteristics. In this study, we reveal the relation P = 1 - e-α between the statistical SERS probability P and the microscopic average molecule number α in SERS spectra, which lays the physical foundation for a statistical route to implement SM-SERS quantitation. Utilizing SERS probability calibration, we achieve quantitative SERS analysis with batch-to-batch robustness, extremely wide detection range of concentration covering 9 orders of magnitude, and ultralow detection limit far below the single-molecule level. These results indicate the physical feasibility of robust SERS quantitation through statistical route and certainly open a new avenue for implementing SERS as a practical analysis tool in various application scenarios.

2.
J Gene Med ; 26(2): e3666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38391150

RESUMO

BACKGROUND: Proliferation, metabolism, tumor occurrence and development in gliomas are greatly influenced by RNA modifications. However, no research has integrated the four RNA methylation regulators of m6A, m1A, m5C and m7G in gliomas to analyze their relationship with glioma prognosis and intratumoral heterogeneity. METHODS: Based on three in-house single-cell RNA-sequencing (scRNA-seq) data, the glioma heterogeneity and characteristics of m6A/m1A/m5C/m7G-related regulators were elucidated. Based on publicly available bulk RNA-sequencing (RNA-seq) data, a risk-score system for predicting the overall survival (OS) for gliomas was established by three machine learning methods and multivariate Cox regression analysis, and validated in an independent cohort. RESULTS: Seven cell types were identified in gliomas by three scRNA-seq data, and 22 m6A/m1A/m5C/m7G-related regulators among the marker genes of different cell subtypes were discovered. Three m6A/m1A/m5C/m7G-related regulators were selected to construct prognostic risk-score model, including EIFA, NSUN6 and TET1. The high-risk patients showed higher immune checkpoint expression, higher tumor microenvironment scores, as well as higher tumor mutation burden and poorer prognosis compared with low-risk patients. Additionally, the area under the curve values of the risk score and nomogram were 0.833 and 0.922 for 3 year survival and 0.759 and 0.885 for 5 year survival for gliomas. EIF3A was significantly highly expressed in glioma tissues in our in-house RNA-sequencing data (p < 0.05). CONCLUSION: These findings may contribute to further understanding of the role of m6A/m1A/m5C/m7G-related regulators in gliomas, and provide novel and reliable biomarkers for gliomas prognosis and treatment.


Assuntos
Adenina/análogos & derivados , Glioma , Análise da Expressão Gênica de Célula Única , Humanos , RNA-Seq , Glioma/genética , RNA , Microambiente Tumoral/genética , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas , tRNA Metiltransferases
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124405, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718746

RESUMO

With the expansion of the application of high-sensitivity Surface-enhanced Raman scattering (SERS) technique, micro SERS-active substrates with rich optical properties and high-level functions are desired. In this study, silver nanorings with nanoscale surface roughness were fabricated as a new type of enclosed quasi-2D micro-SERS-active substrate. Highly-crystalline spherical and hemispherical silver nanoprotrusions were densely and uniformly distributed over the entire surface of the nanorings. The SERS signals were significantly enhanced on the roughened silver nanorings which were mainly derived from the maximal localized surface plasmon resonance (LSPR) points at the junctions between adjacent coupled nanoprotrusions on the roughened nanorings. The mapping image shows a uniform and intense LSPR enhancement over the nanorings, owing to the uniform and dense distribution of silver nanoprotrusions and the resulting uniform distribution of maximal LSPR points on the roughened nanorings. The dark-field spectra further indicated that the single roughened silver nanoring had significant LSPR enhancement, a wide LSPR frequency-range response, and adaptability for SERS enhancement. Notably, both the measured and simulated results demonstrate that the maximal LSPR enhancement at the junctions between the nanoprotrusions, which are distributed on the inner surface of the silver nanoring, is higher than that on the outer surface because of the plasmon-focusing effect of the enclosed silver nanoring, which leads to the lateral asymmetrical distribution of LSPR intensity, indicating more LSPR and SERS features. These results indicate that single roughened silver nanorings exhibit excellent performance as a new type of enclosed quasi-2D silver nanoring micro-SERS-active substrate, microzone LSPR catalysis, and micro/nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA