Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(12): 2505-2512, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32091897

RESUMO

Utilizing a magnetron-sputtering (MagS) source in tandem with a multiple-ion laminar flow tube (MIFT) reactor and a customized triple quadrupole mass spectrometer (TQMS), we have prepared clean Pbn+ (n = 1-13) clusters and measured their reactivity with iodomethane under high carrier gas pressures. Strong size dependences are found for the reactivity of these cationic Pbn+ clusters with CH3I. For the Pbn+ with n ≤ 4, iodinated clusters PbnI+ were found to be the dominant products, in strong contrast to n > 4 where no such products were seen. Quantum chemical studies show that with an increasing number of Pb atoms, the Pb-Pb interatomic interactions become stronger compared with the Pb-I bonding in PbnI+ clusters. Furthermore, the reactions of Pb1-4+ with CH3I have fairly small transition state energy barriers, in contrast to those for Pbn>4+ clusters which have magnitudes that will prevent reactions under the ambient conditions.

2.
J Phys Chem A ; 124(20): 4087-4094, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32352298

RESUMO

Utilizing the homemade reflection time-of-flight mass spectrometer (Re-TOFMS), here we report a comprehensive study of the reactivity of aluminum clusters Aln±,0 with molecular benzene in the gas-phase flow tube reactor. During the reactions with benzene, Aln+ clusters were found to be relatively more reactive than Aln0/-, and interestingly, the Al13+ cluster exhibited more reaction product than its neighboring Aln+ clusters. With an emphasis on Al13±,0 clusters, we have performed an in-depth study utilizing DFT calculations to unravel the diverse reactivity of aluminum clusters with benzene. It is revealed that the Al13+Bz cluster has a short Al-C distance and high binding energy, as well as an enlarged HOMO-LUMO gap in comparison with that of Al13+. This contrasts with Al130/- and Al15+, of which the HOMO-LUMO gaps are reduced when the cluster binds with a benzene molecule. Further, the cluster-π interactions between aluminum clusters and benzene are fully demonstrated via topological analysis, natural bonding orbital (NBO) analysis, and noncovalent interaction plots based on independent gradient model (IGM). The unique gyro-like structure of Al13+ and cluster-π interaction induce uneven redistribution of charges on the 13- atoms of Al13+, enabling a tight Al-C bond with strong electrostatic attraction and orbital interactions, which largely differs from the weak orbital overlap and electrostatic repulsion between benzene molecule and Al130/- clusters.

3.
Phys Chem Chem Phys ; 21(21): 11234-11241, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31099360

RESUMO

Vanadium is a polyvalent metallic element. The fact that V-O bears a much larger bond energy than the V-V metal bond challenges the preparation of pure vanadium clusters and the observation of their reactions with oxygen-containing chemicals. Utilizing a customized reflection time-of-flight mass spectrometer (Re-TOFMS), here we have prepared well-resolved small and large cationic vanadium clusters Vn+ (n < 30), and we conducted a comprehensive study on their reactivity with oxygen. It is illustrated that cationic Vn+ clusters readily react with oxygen leading to the production of both etched building blocks and oxygen-rich VnOm+ (n < m) species profiting from the ion-molecule attraction and hence increased collisional cross section. Furthermore, DFT-based energy calculations reveal that the oxygen-addition reactions are thermodynamically and kinetically favorable pathways. Also the generalized charge decomposition analysis (GCDA) illustrates that the ion-molecule charge-transfer interactions initiate the incorporation of vanadium oxides. This finding of synchronous channels of both etching and growth of vanadium clusters clarifies the reactivity of Vn+ clusters with oxygen, interprets the readily formed VnOm+ clusters within the classification of the CxAyBz series (A = VO2, B = VO3, C = VO), and enriches the understanding of the industrial chemistry of vanadium.

4.
J Phys Chem A ; 123(50): 10739-10745, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31765562

RESUMO

Hydrogenation of organic chemicals is one of the most frequent things that people take for granted in mass spectroscopy; however, it could provide important information on spontaneous or stimulated hydrogen transfer in initiating chemical reactions and in determining the product selectivity and conversion efficiency. Here, we present a study of hydrogenation of acetone via vacuum ultraviolet laser ionization mass spectrometry (VUV-LIMS) and density functional theory (DFT) calculations. It is interestingly found that acetone dimer readily captures a hydrogen to form (C3H6O)2H+ in the presence of alcohols, shedding light on the intracluster hydrogen atom transfer via a trimolecular mechanism. This is well consistent with the DFT calculation results of energetics and reaction kinetics. It is worth noting that, although the hydrogen bond interaction of O-H···O is stronger than that of C-H···O, the hydrogen atom transfer (HAT) tends to proceed from the methyl group of the alcohols to acetone. We fully demonstrate the intracluster HAT reactivity of such a simple system and provide new insights into hydrogen bond interactions and molecular cluster chemistry.

5.
J Phys Chem A ; 123(32): 6921-6926, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31314992

RESUMO

Utilizing a customized multiple-ion laminar flow tube reactor in tandem with a triple quadrupole mass spectrometer, we report a study of the gas-phase reactivity of Agn+ clusters with acetylene. Well-resolved Agn+ clusters (n = 1-20) are produced by a self-designed magnetron sputtering source (MagS); however, on their reactions with acetylene under sufficient collisional conditions, only Ag7+[C2H2] is produced with a reasonable intensity. DFT calculations reveal that Agn+ clusters do not form strong Ag-C bonds with C2H2 and Ag7+[C2H2] bears larger binding energy than the other Agn+[C2H2] although within similar cluster-π interactions. Besides gas-phase reaction rate estimation, the relatively large noncovalent cluster-π interaction in Ag7+[C2H2] is fully demonstrated via topological analysis and natural bonding orbital analysis. Also, we illustrate both thermodynamically and kinetically favored channels in producing the Ag7+[C2H2]. This study helps in understanding metal-involved noncovalent bonds and how such weak interactions are able to tune the material function and biological activity.

6.
Anal Chem ; 90(17): 10635-10640, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30058330

RESUMO

The application of low-fragmentation mass spectrometry to identify chemicals has been recognized to be of particular importance in chemistry, biomedicine, and materials science. Utilizing a customized all-solid-state picosecond-pulsed deep-ultraviolet (DUV) laser, here we present new advances into photoionization mass spectrometry. The DUV laser ionization mass spectrometry (DUV-LIMS) results in very clean spectra pertaining to minimized structure relaxation and fragmentation under the ultrafast ionization process. Typical DUV-LIMS applications are illustrated not only for small organic molecules but also for long-chain unsaturated hydrocarbons and clusters of benzene. The unique advantages of DUV-LIMS enable us to detect and analyze confusing organic compound mixtures, indicating promising applications. DUV-LIMS is also found to be applicable in the identification of phenylenediamine isomers. An in-depth analysis of reaction dynamics is provided showing how hydrogen-atom-transfer (HAT) initiates the distinguishable photodissociation of phenylenediamines under near-resonant excitation. In particular, ortho-phenylenediamine (OPD) finds a remarkable dehydrogenation product with comparable intensity to the molecular ion peak, which is associated with the quantum tunnelling tautomers, providing new subjects for studying intramolecular noncovalent interactions.

7.
Phys Chem Chem Phys ; 19(38): 25840-25845, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28929151

RESUMO

The conversion of glycerol to epichlorohydrin (GTE) is of great interest because the product is widely used in plastics, rubbers and adhesives, and also contributes to the disposal of the reactant glycerol, a major by-product in biodiesel production. Here we find effective catalysis by small gold clusters for the GTE reaction in water with an enhanced selectivity towards the desired product. Along with natural bond orbital (NBO) analysis rationalizing the donor-acceptor charge-transfer interactions, we illustrate the mechanism for bond activation in the reactants and intermediates over gold cluster catalysts, and present thermodynamically and kinetically favoured reaction pathways for dehydrochlorination in GTE processes.

8.
Phys Chem Chem Phys ; 16(38): 20932-40, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25171198

RESUMO

Two kinds of carbon materials, i.e., graphene and graphene oxide (GO), were successfully incorporated into a lyotropic liquid crystal (LLC) matrix formed by n-dodecyl tetraethylene monoether (C12E4). The properties of graphene-C12E4 and GO-C12E4 LLC composites were characterized by UV-vis absorption, transmission electron microscopy (TEM) observations, polarized optical microscopy (POM) observations, small-angle X-ray scattering (SAXS) and rheological measurements. SAXS results indicate that both graphene and GO are well-dispersed in the C12E4 LLC matrix and some interactions occur between the C12E4 LLC matrix and graphene (or GO) sheets. Moreover, it is demonstrated that graphene interacts with the hydrophobic part of C12E4 LLC while GO mainly interacts with the hydrophilic part of C12E4 LLC because of the different properties of graphene and GO. Integration of graphene and GO into C12E4-PEG systems by a spontaneous phase separation method reveals the different interaction mechanisms of graphene and GO with C12E4 LLC. It can be concluded that the mechanical and electrical properties of the C12E4 LLC have been largely improved by the incorporation of graphene and GO, which opens the door for wide applications in nanotechnology, electrochemical and biochemical areas.

9.
Phys Chem Chem Phys ; 16(28): 14771-80, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24922176

RESUMO

Carbon nanotubes (CNTs) were incorporated into a lyotropic liquid crystal (LLC) matrix at room temperature through spontaneous phase separation. The phase separation process occurred in n-dodecyl tetraethylene monoether (C12E4) solutions induced by the hydrophilic polymer, poly(ethylene glycol) (PEG). It was found that the molecular weight of PEG has a significant effect on the CNTs-C12E4 system, which not only influences the phase behavior of the system but also changes the properties of the CNTs-LLC composites. Polarized optical microscopy (POM) images, combined with small-angle X-ray scattering (SAXS) results, indicate that CNTs incorporate within the layers of the lamellar LLCs without destroying the structure of LLCs. Moreover, UV-vis absorption, Raman spectra and rheological measurements were performed to investigate the characteristic properties of the CNTs-LLC composites. This study not only gives a more comprehensive understanding of polymer-induced phase separation, but also expands the potential uses of CNTs-LLC composites in nanotechnology.


Assuntos
Cristais Líquidos/química , Nanotubos de Carbono/química , Polietilenoglicóis/química , Peso Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Natl Sci Rev ; 10(3): nwac197, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37035019

RESUMO

Why one chemical is more stable than another is not always easy to understand. A unified answer for metal clusters has led to the establishment of the superatom concept, which rationalizes the delocalization of electrons; however, cluster stability based on superatom theory has not been confirmed unambiguously for any metal other than the s- and p-blocks of the periodic table of elements. Here, we have prepared pure niobium clusters and observed their reactions with CO under sufficient gas collision conditions. We find prominent inertness of Nb12 +, which survives CO attack. Comprehensive theoretical calculation results reveal that the inertness of Nb12 + is associated with its cage structure and well-organized superatomic orbitals, giving rise to energetic superiority among the studied clusters. It is revealed that not only the 5s but also the 4d electrons of Nb delocalize in the cluster and significantly contribute to the superatomic state, resulting in reasonable cage aromaticity. This hollow-cage cluster, which we have called a 'niobespherene', provides a clue with regard to designing new materials of all-metal aromaticity and Nb-involved catalysts free of CO poisoning.

11.
Rev Sci Instrum ; 93(11): 113307, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461460

RESUMO

We have developed an integrated instrument system of a multiple-ion laminar flow tube (MIFT) reactor combined with a tandem quadrupole mass spectrometer (TQMS) and soft-landing deposition (SD) apparatus. A customized water-cooling magnetron sputtering (MagS) source is designed, by which we are able to attain a highly efficient preparation of metal clusters of 1-30 atoms with tunable size distributions. Following the MagS source, a laminar flow tube reactor is designed, allowing for sufficient gas-collision reactions of the as-prepared metal clusters, which is advantageous for probing magic clusters and minimizing wall effects when probing the reaction dynamics of such clusters. The customized TQMS analyzer involves a conical octupole, two linear octupoles, a quadruple ion deflector, and a 19 mm quadruple mass analyzer, allowing to decrease the pressure stepwise (from ∼5 to ∼10-9 Torr), thus ensuring high sensitivity and high resolution of the mass spectrometry analysis. In addition, we have designed a dual SD apparatus for the mass-selected deposition of clusters and their reaction products. For the whole system, abbreviated as MagS-MIFT-TQMS-SD, we have performed a detailed ions-fly simulation and quantitatively estimated the ions transfer efficiency under vacuum conditions determined by real experiments. Taking these advantages, well-resolved Pbn +, Agn +, and Nbn + clusters have been produced, allowing for meticulous studies of cluster reactions under sufficient gas-phase collisions free of electric field trapping. Also, we have tested the efficiency of the dual SD.

12.
Chem Commun (Camb) ; 55(28): 4015-4018, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30806423

RESUMO

Utilizing a customized mass spectrometer, we analyze selective C-C bond and C-N bond activation in neurotransmitters dopamine (DA) and norepinephrine (NE) under deep ultraviolet laser irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA