Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Br J Nutr ; 131(1): 27-40, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37492950

RESUMO

An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 ß (gs3kß) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Carpas/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Peixes/genética , Dieta/veterinária , Suplementos Nutricionais/análise , RNA Mensageiro/metabolismo , Carboidratos , Glucose , Ração Animal/análise , Imunidade Inata
2.
Fish Shellfish Immunol ; 150: 109610, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734117

RESUMO

This study looked at the effects of adding butyric acid (BA) to the diets of juvenile Pacific shrimp and how it affected their response to survival, immunity, histopathological, and gene expression profiles under heat stress. The shrimp were divided into groups: a control group with no BA supplementation and groups with BA inclusion levels of 0.5 %, 1 %, 1.5 %, 2 %, and 2.5 %. Following the 8-week feeding trial period, the shrimp endured a heat stress test lasting 1 h at a temperature of 38 °C. The results showed that the control group had a lower survival rate than those given BA. Interestingly, no mortality was observed in the group receiving 1.5 % BA supplementation. Heat stress had a negative impact on the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in the control group. Still, these activities were increased in shrimp fed the BA diet. Similar variations were observed in AST and ALT fluctuations among the different groups. The levels of triglycerides (TG) and cholesterol (CHO) increased with high temperatures but were reduced in shrimp-supplemented BA. The activity of an antioxidant enzyme superoxide dismutase (SOD) increased with higher BA levels (P < 0.05). Moreover, the groups supplemented with 1.5 % BA exhibited a significant reduction in malondialdehyde (MDA) content (P < 0.05), suggesting the potential antioxidant properties of BA. The histology of the shrimp's hepatopancreas showed improvements in the groups given BA. Conversely, the BA significantly down-regulated the HSPs and up-regulated MnSOD transcript level in response to heat stress. The measured parameters determine the essential dietary requirement of BA for shrimp. Based on the results, the optimal level of BA for survival, antioxidant function, and immunity for shrimp under heat stress is 1.5 %.


Assuntos
Ração Animal , Ácido Butírico , Dieta , Suplementos Nutricionais , Resposta ao Choque Térmico , Hepatopâncreas , Penaeidae , Animais , Penaeidae/imunologia , Penaeidae/genética , Penaeidae/fisiologia , Penaeidae/efeitos dos fármacos , Hepatopâncreas/imunologia , Hepatopâncreas/efeitos dos fármacos , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais/análise , Resposta ao Choque Térmico/efeitos dos fármacos , Ácido Butírico/administração & dosagem , Temperatura Alta/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Distribuição Aleatória , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia
3.
Fish Shellfish Immunol ; 141: 109003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604266

RESUMO

Glutamine addition can improve immunity and intestinal development in fish. This study examined the protective roles of glutamine on growth suppression and enteritis induced by glycinin in juvenile hybrid groupers (female Epinephelus fuscoguttatus × male Epinephelus lanceolatus). The experiment set four isonitrogenous and isolipidic trial diets: a diet containing 10% glycinin (11S), 10% of 11S diet supplemented with 1% or 2% alanine-glutamine (1% or 2% Ala-Gln), and a diet containing neither 11S nor Ala-Gln (FM). A feeding trial was conducted in hybrid grouper for 8 weeks. Weight gain and specific growth rates in Groups 1% and 2% Ala-Gln were significantly higher than those of the 11S group but were similar to those of the FM group. The intestinal muscular layer thickness, plica height and width of the 2% Ala-Gln group were significantly higher than those of Group 11S. The enterocyte proliferation efficiency of the 11S group was significantly lower compared to other groups. Compared with the 11S group, Groups 1% and 2% Ala-Gln fish had increased intestinal lysozyme activities, complement 3 and immunoglobulin M as well as cathelicidin contents. The mRNA levels of tnf-α, il-1ß, ifn-α, and hsp70 genes were more downregulated in Groups 1% and 2% Ala-Gln than in Group 11S. Compared with FM group, fish from the 11S group had significantly lower mRNA levels of myd88, ikkß, and nf-κb p65 genes. These three values in the 2% Ala-Gln group were significantly lower than those in Group 11S but not significantly different from those of Group FM. The relative abundance of Vibrio in Group 11S was higher than that in Groups FM and 2% Ala-Gln. Intestinal glutamine, glutaminase, glutamic acid, α-ketoglutarate, malate dehydrogenase and ATP contents were higher in Groups 1% and 2% Ala-Gln than in Group 11S. These results suggest that glutamine is a useful feed additive to enhance growth and intestinal immunity, alleviate inflammation, and modulate gut microbiota in hybrid grouper fed high-dose glycinin.


Assuntos
Bass , Glutamina , Animais , Feminino , Masculino , Ração Animal/análise , Dieta/veterinária , RNA Mensageiro/genética , Proteínas de Soja
4.
Aquac Nutr ; 2023: 8580240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139116

RESUMO

This research studied the effects of glycerol monolaurate (GML) to diets on the digestive capacity, intestinal structure, intestinal microbiota, and disease resistance for juvenile pompano Trachinotus ovatus (mean weight = 14.00 ± 0.70 g). T. ovatus were, respectively, fed six diets containing 0.00, 0.05, 0.10, 0.15, 0.20, and 0.25% GML for 56 days. The highest weight gain rate was observed in the 0.15% GML group. In the intestine, amylase activities in the 0.10, 0.15, 0.20, and 0.25% GML groups were significantly increased, compared with 0.00% GML group (P < 0.05). Lipase activities in the 0.10 and 0.15% GML groups were significantly increased (P < 0.05). Similar significant elevations in the protease activities were also found in the 0.10, 0.15, and 0.20% GML groups (P < 0.05). Amylase activities were significantly higher in the 0.10, 0.15, 0.20, and 0.25% GML groups than that in the 0.00% GML group (P < 0.05). Villus lengths (VL) and muscle thicknesses (MT) of the 0.05, 0.10, 0.15, and 0.20% GML groups were significantly enhanced, and the villus widths (VW) in the 0.05, 0.10, and 0.15% groups were significantly increased (P < 0.05). Additionally, 0.15% GML significantly improved the intestinal immunity by upregulating interleukin 10 (il-10), increasing beneficial bacteria abundances (e.g., Vibrio, Pseudomonas, and Cetobacterium), downregulating nuclear factor kappa b (nf-κb) and interleukin 8 (il-8), and decreasing harmful bacteria abundances (e.g., Brevinema and Acinetobacter) (P < 0.05). After challenge test, GML significantly increased the survival rate (80%-96%) (P < 0.05). In addition, ACP and AKP activities in the GML-supplemented groups were significantly higher than those in the 0.00% GML group, and LZM activity was significantly higher in the 0.05, 0.10, 0.15, and 0.20% GML groups than that in the 0.00% GML group (P < 0.05). In summary, 0.15% GML significantly promoted the intestinal digestibility, improved the intestinal microflora, regulated intestinal immune-related genes, and increased resistance to V. parahaemolyticus of juvenile pompano T. ovatus.

5.
Aquac Nutr ; 2023: 1184252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303606

RESUMO

An 8-week feeding trial was conducted to investigate the effects of C. butyricum on the growth performance, microbiota, immunity response, and disease resistance in hybrid grouper fed with cottonseed protein concentrate (CPC) replacement of fishmeal. Six groups of isonitrogenous and isolipid diets were formulated including a positive control group (50% fishmeal, PC), a negative control group (CPC replaced 50% of fishmeal protein, NC), and Clostridium butyricum supplemented with 0.05% (C1, 5 × 108 CFU/kg), 0.2% (C2, 2 × 109 CFU/kg), 0.8% (C3, 8 × 109 CFU/kg), and 3.2% (C4, 3.2 × 1010 CFU/kg), respectively, to the NC group. The results showed that weight gain rate and specific growth rate were significantly higher in the C4 group than that in the NC group (P < 0.05). After supplementation with C. butyricum, the amylase, lipase, and trypsin activities were significantly higher than the NC group (P < 0.05; except group C1), and the same results were obtained for intestinal morphometry. The intestinal proinflammatory factors were significantly downregulated, and the anti-inflammatory factors were significantly upregulated in the C3 and C4 groups compared with the NC group after supplementation with 0.8%-3.2% C. butyricum (P < 0.05). At the phylum level, the PC, NC, and C4 groups were dominated by the Firmicutes and the Proteobacteria. At the genus level, the relative abundance of Bacillus in the NC group was lower than that in the PC and C4 groups. After supplementation with C. butyricum, grouper in the C4 group showed significantly higher resistance to V. harveyi than the NC group (P < 0.05). Above all, taking into account the effects of immunity and disease resistance, it was recommended to supplement 3.2% C. butyricum in the diet of grouper fed the replacement of 50% fishmeal protein by CPC.

6.
Br J Nutr ; 128(9): 1674-1688, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34814963

RESUMO

The present study investigated the effect of black soldier fly (Hermetia illucens) larvae meal (BSF) on haemolymph biochemical indicators, muscle metabolites as well as the lipid and glucose metabolism of Pacific white shrimp Litopenaeus vannamei. Four diets were formulated in which the control diet contained 25 % of fishmeal (FM) and 10 % (BSF10), 20 % (BSF20), and 30 % (BSF30) of FM protein were replaced with BSF. Four hundred and eighty shrimp (0·88 ± 0·00 g) were distributed to four groups of three replicates and fed for 7 weeks. Results showed that growth performance of shrimp fed BSF30 significantly decreased compared with those fed FM, but there was no significant difference in survival among groups. The whole shrimp crude lipid content, haemolymph TAG and total cholesterol were decreased with the increasing BSF inclusion. The results of metabolomics showed that the metabolite patterns of shrimp fed different diets were altered, with significant changes in metabolites related to lipid metabolism, glucose metabolism as well as TCA cycle. The mRNA expressions of hk, pfk, pk, pepck, ampk, mcd, cpt-1 and scd1 in hepatopancreas were downregulated in shrimp fed BSF30, but mRNA expression of acc1 was upregulated. Unlike BSF30, the mRNA expressions of fas, cpt-1, fbp and 6pgd in hepatopancreas were upregulated in shrimp fed BSF20. This study indicates that BSF20 diet promoted lipid synthesis and lipolysis, while BSF30 diet weakened ß-oxidation and glycolysis as well as affected the unsaturated fatty acids synthesis, which may affect the growth performance and body composition of shrimp.


Assuntos
Dieta , Dípteros , Animais , Larva , Glucose , Lipídeos , RNA Mensageiro , Ração Animal/análise
7.
Fish Shellfish Immunol ; 128: 634-643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35987502

RESUMO

In order to evaluate the effects of glycerol monolaurate (GML) on the growth performance, immunology function, disease resistance and intestinal microbiota for hybrid groupers. Seven levels of GML (0, 600, 1200, 1800, 2400, 3000 and 3600 mg/kg) were added to diets and were noted as the G1 (control group), G2, G3, G4, G5, G6 and G7, respectively. Each experimental diet was fed to triplicate groups of 30 juvenile groupers for 8 weeks. The FBW, WGR and SGR were significantly higher and FCR was significantly lower in the G4 group compared to the G1 group (P < 0.05). Serum immune enzyme activities (ACP, AKP and LZM) rose and then fell and had the highest values in the G4 group (P < 0.05). The expression of TNF-α and IL6 in head kidney was significantly inhibited (P < 0.05), while the expression of TLR22 was increased (P < 0.05). After the Vibrio parahaemolyticus challenge test, ACP and AKP activities were increased in the G4 and G5 groups, while mortality was lower than in the G1 group (P < 0.05). GML significantly modulated the abundance of intestinal microbiota, with the G4 and G5 groups increasing the relative abundance of the Firmicutes and Bacillus, respectively (P < 0.05). The alpha diversity of the G5 group (Sob, Chao1 and ACE) was significantly higher than that of the G1 group (P < 0.05). In summary, the optimal level of GML was 1700 mg/kg according to the regression equation model fitted by the WGR index.


Assuntos
Bass , Microbioma Gastrointestinal , Ração Animal/análise , Animais , Dieta/veterinária , Resistência à Doença , Ácidos Graxos , Interleucina-6 , Lauratos , Monoglicerídeos , Fator de Necrose Tumoral alfa
8.
Fish Shellfish Immunol ; 120: 497-506, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34942373

RESUMO

An 8-week feeding trial was conducted to investigate the influence of partial replacement of fishmeal (FM) by black soldier fly (BSF) (Hermetia illucens) on the growth, distal intestine morphology, intestinal flora, and intestinal immune response of pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Four diets were formulated, 0% (0 g kg-1), 10% (50 g kg-1), 20% (100 g kg-1) and 30% (150 g kg-1) fishmeal were replaced with BSF, named as FM, BSF10, BSF20, BSF30, severally. The study found that, with the increasing dietary BSF levels, growth and feed conversion ratio of fish decreased significantly (P < 0.05). Chitinase and trypsin activities were significantly increased with increasing dietary BSF levels (P < 0.05). With the increasing dietary BSF levels, distal intestinal muscularis thickness and mucosal fold length decreased significantly (P < 0.05), as well as total abundance of intestinal flora. The relative abundance of four phyla and six genera among the top 20 genera were significantly affected by dietary BSF levels (P < 0.05). With the increasing dietary BSF levels, the mRNA levels of nf-κbem1, r-cel and il-10 up-regulated significantly (P < 0.05). For fish fed BSF30 diet, the mRNA levels of myd88 and tlr22 were significantly higher than fish fed FM diet (P < 0.05). In conclusion, replacement fishmeal with BSF increased activity of digestive enzymes, but negatively affected growth performance and intestinal health of pearl gentian grouper.


Assuntos
Bass , Dieta/veterinária , Dípteros , Microbioma Gastrointestinal , Ração Animal/análise , Animais , Bass/crescimento & desenvolvimento , Bass/imunologia , Imunidade , Intestinos , RNA Mensageiro
9.
Fish Shellfish Immunol ; 126: 283-291, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618172

RESUMO

Clostridium butyricum (CB) is a gram-positive bacterium that secretes short-chain fatty acids such as butyric acid and so on. An 8-week feeding trial was conducted to investigate the effects of CB on the growth performance, antioxidant capacity, immunity and resistance to Vibrio parahaemolyticus in Litopenaeus Vannamei fed with cottonseed protein concentrate (CPC) replacement of fishmeal. Six iso-nitrogenous (40%) and iso-lipidic (6%) diets were formulated including a positive control group (PC, 25% fishmeal), a negative control group (NC, CPC replaced 30% of fishmeal protein), and 0.03% (C1, 3 × 108 CFU/kg), 0.12% (C2, 1.2 × 109 CFU/kg), 0.48% (C3, 4.8 × 109 CFU/kg) and 1.92% (C4, 1.92 × 1010 CFU/kg) CB were supplemented on the negative control group (NC). After the feeding trial, the remaining shrimp in each treatment group were subjected to a challenge experiment with Vibrio parahaemolyticus. The results indicated that weight gain rate (WGR), specific growth rate (SGR) in C4 group were significantly lower than those in PC and C2 groups (P < 0.05); the feed conversion ratio (FCR) was significantly higher than that of PC and C2 groups (P < 0.05). There was no significant difference in survival rate (SR) among all groups (P > 0.05). Compared to the PC and NC groups, the total superoxide capacity, superoxide dismutase and lysozyme were significantly higher in the C4 group (P < 0.05); the glutathione peroxidase, acid phosphatase and alkaline phosphatase were significantly higher in the C3 group (P < 0.05); and the malondialdehyde was significantly lower in the C4 group (P < 0.05). The relative mRNA expressions of Toll receptor (TLR), innate immune deficiency gene (IMD), penaiedin3a (Pen3) were significantly down-regulated in the NC group than those in the PC group (P < 0.05). In addition, the relative mRNA expressions of TLR, IMD and Pen3 were significantly up-regulated in all groups supplemented with CB than those in the NC group (P < 0.05). Moreover, the cumulative mortality rate in the NC group was not significantly different from the PC group (P > 0.05) and was significantly higher than those in the C3 and C4 groups (P < 0.05). In conclusion, the CB supplementation on the basis of CPC replacement of 30% fishmeal protein enhanced significantly the antioxidant capacity, immunity and disease resistance of shrimp and improved its growth performance. Therefore, considering the factors of the growth, immunity and disease resistance, the CB supplementation of 0.12%-0.48% (1.2 × 109 CFU/kg-4.8 × 109 CFU/kg) was recommended in the diet of L. vannamei based on the results of this experiment.


Assuntos
Clostridium butyricum , Penaeidae , Vibrio parahaemolyticus , Animais , Antioxidantes/metabolismo , Óleo de Sementes de Algodão , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Imunidade Inata , RNA Mensageiro , Vibrio parahaemolyticus/genética
10.
Fish Shellfish Immunol ; 131: 137-149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206997

RESUMO

The study evaluated the effects of dietary phosphorus supplementation on the fishmeal replacement with Clostridium autoethanogenum protein (CAP) in the diet of L. vannamei. Four isonitrogenous and isolipid diets were formulated: the PC diet contains 25% fishmeal, the NC, P1 and P2 diets were replaced 40% fishmeal with CAP and supplemented with 0, 0.8 and 1.6% NaH2PO4 respectively (equivalent to dietary phosphorus level of 0.96%, 1.12% and 1.27%). Sampling and V. parahaemolyticus challenge test were conducted after 50-day-feeding (initial shrimp weight 1.79 ± 0.02 g). The results showed that there were no significant differences in the growth performance of shrimp among the 4 groups. The expressions of dorsal in the gut were significantly lower in shrimp fed the P1 and P2 diets than shrimp fed the NC diet and the expression of peroxinectin in the gut was lower in shrimp fed the NC diet than others. The cumulative mortality of shrimp after V. parahaemolyticus challenge was significantly lower in shrimp fed the P2 diet than those fed the NC diet. After the challenge, genes expressions related to the prophenoloxidase activating system (proPO, lgbp, ppaf) were inhibited in the hepatopancreas of shrimp fed NC diet but activated in shrimp fed the P1 diet compared to those fed the PC diet. The AKP and T-AOC activities were higher in shrimp fed the P2 diet than those fed the other diets. The thickness of muscle layer of shrimp fed the P1 diet was thicker than that in the other groups, and significant stress damage happened in the midgut of the shrimp fed the NC diet. The abundance of Pseudoalteromonas, Haloferula and Ruegeria in shrimp fed the P1 diet was higher than those fed the other diets, while Vibrio in shrimp fed the P2 diet was higher than those fed the other diets. This indicated that a low fishmeal diet with dietary phosphorus level of 1.12% could improve the histology, enhance immune response, and increase the abundance of beneficial bacteria in the gut of shrimp. The low fishmeal diet with dietary phosphorus level of 1.27% could improve disease resistance and antioxidant capacity, but there was a possibility of damage to the gut histology as well as increasing abundance of Vibrio in the gut microbiota of shrimp.


Assuntos
Penaeidae , Fósforo na Dieta , Vibrio , Animais , Fósforo na Dieta/farmacologia , Ração Animal/análise , Fósforo , Imunidade Inata , Dieta/veterinária , Suplementos Nutricionais
11.
Fish Shellfish Immunol ; 131: 105-118, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36198380

RESUMO

Artemisinin (ART) is a kind of Chinese herbal medicine worth exploring, which obtains various physiological activities. In order to study the prebiotic effect of ART on Litopenaeus vannamei fed cottonseed protein concentrate meal diets, six groups of isonitrogenous and isolipid diets were prepared (including the fish meal control group, FM; cottonseed protein concentrate replacing 30% fishmeal protein and supplementing ART groups: ART0, ART0.3, ART0.6, ART0.9, and ART1.2). The feeding trials was lasted for 56 days. The results showed that the final body weight, weight gain and specific growth rate of the ART0.6 group were the highest, yet the feed coefficient rate of the ART0.6 group was the lowest significantly (P < 0.05). There was no significant difference in survival rate among treatments (P > 0.05). In serum, the content of malondialdehyde in ART0 group was the highest (P < 0.05); the activities of superoxide dismutase, catalase, phenol oxidase and lysozyme increased firstly and then decreased among the ARTs groups (P < 0.05). The activities of intestinal digestive enzymes (including the trypsin, lipase and amylase) showed an upward trend among the ARTs groups (P < 0.05). The histological sections showed that the intestinal muscle thickness, fold height and fold width in the FM group were significantly better than those in the ART0 group; while the mentioned above morphological indexes in the ART0 group were significantly lowest among the ARTs groups (P < 0.05). Sequencing of intestinal microbiota suggested that the microbial richness indexes firstly increased and then decreased (P < 0.05); the bacterial community structure of each treatment group was almost close; the relative abundance of pathogenic bacteria decreased significantly (P < 0.05), such as the Proteobacteria and Cyanobacteria at phylum level, besides the Vibrio and Candidatus Bacilloplasma at genus level. In intestinal tissue, the relative expression levels of TOLL1, TRAF6 and Pehaeidih3 showed up-regulated trends, while the expression of Crustin and LZM firstly up-regulated and then down-regulated (P < 0.05). The challenge experiment suggested that the cumulative mortality of FM group was significantly lower than that of ART0 group; besides the cumulative mortality firstly increased and then decreased between the ARTs groups (P < 0.05). In conclusion, the dietary supplementation of ART can improve the growth, antioxidant capacity, immune response, gut health and disease resistance of the shrimp. To be considered as a dietary immune enhancer, the recommended supplementation level of ART in shrimp's cottonseed protein concentrate meal diets is 0.43%.


Assuntos
Artemisininas , Penaeidae , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Antioxidantes/farmacologia , Óleo de Sementes de Algodão , Ração Animal/análise , Resistência à Doença , Dieta/veterinária , Artemisininas/farmacologia , Suplementos Nutricionais/análise
12.
Aquac Nutr ; 2022: 4347466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860448

RESUMO

The largemouth bass (Micropterus salmoides) were fed diets with three experimental feeds, a control diet (Control, crude protein (CP): 54.52%, crude lipid (CL): 11.45%), a low-protein diet with lysophospholipid (LP-Ly, CP: 52.46%, CL: 11.36%), and a low-lipid diet with lysophospholipid (LL-Ly, CP: 54.43%, CL: 10.19%), respectively. The LP-Ly and LL-Ly groups represented the addition of 1 g/kg of lysophospholipids in the low-protein and low-lipid groups, respectively. After a 64-day feeding trial, the experimental results showed that the growth performance, hepatosomatic index, and viscerosomatic index of largemouth bass in both the LP-Ly and LL-Ly groups were not significantly different compared to those in the Control group (P > 0.05). The condition factor and CP content of whole fish were significantly higher in the LP-Ly group than those in the Control group (P < 0.05). Compared with the Control group, the serum total cholesterol level and alanine aminotransferase enzyme activity were significantly lower in both the LP-Ly group and the LL-Ly group (P < 0.05). The protease and lipase activities in the liver and intestine of both group LL-Ly and group LP-Ly were significantly higher than those of the Control group (P < 0.05). Compared to both the LL-Ly group and the LP-Ly group, significantly lower liver enzyme activities and gene expression of fatty acid synthase, hormone-sensitive lipase, and carnitine palmitoyltransferase 1 were found in the Control group (P < 0.05). The addition of lysophospholipids increased the abundance of beneficial bacteria (Cetobacterium and Acinetobacter) and decreased the abundance of harmful bacteria (Mycoplasma) in the intestinal flora. In conclusion, the supplementation of lysophospholipids in low-protein or low-lipid diets had no negative effect on the growth performance of largemouth bass, but increased the activity of intestinal digestive enzymes, enhanced the hepatic lipid metabolism, promoted the protein deposition, and regulated the structure and diversity of the intestinal flora.

13.
Fish Shellfish Immunol ; 98: 619-631, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31704202

RESUMO

An 8-week feeding trial was conducted to investigate the effects of partial replacement of fish meal by soy protein concentrate (SPC) on the growth performance, immune responses, intestine morphology and relation gene expression of intestinal inflammation for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) (initial weight 12.5 ±â€¯0.00 g). Eight isonitrogenous and isolipidic diets (48.61% protein and 11.17% lipid) were formulated by replacing 0% (the control), 11%, 22%, 33%, 44%, 55%, 66%, and 77% of fish meal (FM) with SPC, respectively (the eight dietary be named FM, S11, S22, S33, S44, S55, S66, and S77, respectively). With the replacement level increased, the final body weight, weight gain ratio (WGR), specific growth rate (SGR), and survival rate of fish were significantly decreased (P < 0.05) compared with the group FM. By contrast, the feed conversion ratio (FCR) of fish was significantly increased (P < 0.05) when the replacement level up to 44%. Partial FM replacement by SPC (ranging from 11% to 77%) substantially reduced (P < 0.05) the serum total protein, albumin, and total cholesterol contents compared with the group FM. Liver total superoxide dismutase, glutathione peroxidase, catalase activities, and total antioxidant capacity showed the same trend of gradual increase first and then decrease. Their highest values were found in the replacement levels of 55%, 33%, 22%, and 55% and were significantly higher (P < 0.05) than the control group. The lowest malondialdehyde content was observed in group S77 and was significantly lower (P < 0.05) than that of the control group. The complements C3 and C4 contents of fish fed with experimental diets (replacement level ranged from 11% to 66%) were significantly higher (P < 0.05) than the group FM. The liver lysozyme activity of the control group was the lowest and was significantly lower than that of other dietary treatments (P < 0.05). Villus length and muscle thickness in the intestine of fish were significantly lower (P < 0.05) than other groups when the replacement level exceeded 44%. With dietary replacement levels increased, the TLR22, MyD88, p65, pro-inflammatory cytokines (IL-1ß, TNF-α, IL-12P40 and INF-γ) and anti-inflammatory cytokines (TGF-ß, IL-10, epinecidin, MHCIIß and hepcidin) mRNA levels in the proximal intestine were significantly up-regulated (P < 0.05). The TLR22, MyD88, p65, pro-inflammatory cytokines (IL-1ß, TNF-α, IL-12P40 and INF-γ) and anti-inflammatory cytokines (TGF-ß, IL-10, MHCIIß and hepcidin) mRNA levels in the mid intestine were significantly up-regulated (P < 0.05). The mRNA levels of TLR22, anti-inflammatory cytokines (IL-1ß, TNF-α, IL-12P40, INF-γ) and anti-inflammatory cytokines (TGF-ß, IL-10, epinecidin, MHCIIß and hepcidin) in the distal intestine were significantly down-regulated (P < 0.05). The mRNA expression of MyD88 and p65 mRNA were showed a tend increased first and then decreased, and the highest values were observed in group S33 and S55 (P < 0.05), respectively. Based on the present work, the correlation between WGR and FM replacement level with SPC was described using the broken-line model, which estimated the optimum FM replacement to 37.23% for juvenile hybrid grouper dietary.


Assuntos
Bass/imunologia , Doenças dos Peixes/imunologia , Trato Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Inflamação/veterinária , Proteínas de Soja/administração & dosagem , Ração Animal/análise , Animais , Bass/anatomia & histologia , Bass/genética , Bass/crescimento & desenvolvimento , Dieta/veterinária , Relação Dose-Resposta a Droga , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/enzimologia , Inflamação/imunologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia
14.
Fish Shellfish Immunol ; 96: 86-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31801695

RESUMO

This study was conducted to investigate the effects of dietary n-3 highly unsaturated fatty acids (n-3 HUFA) on growth performance, non-specific immunity, expression of some immune-related genes and resistance to Vibrio harveyi in juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × â™‚ Epinephelus lanceolatu). Six isoproteic and isolipidic experimental diets were formulated with graded levels of n-3 HUFA (0.65, 1.00, 1.35, 1.70, 2.05 and 2.40% of dry matter, respectively), and the 0.65% group was used as control group. Each diet was randomly allocated to triplicate groups of fish in 1000 L fiberglass tank, and each tank was stocked with 40 fish (initial weight 12.06 ± 0.01 g) for 8 weeks. Results showed that feed conversion ratio (FCR), survival rate (SR), hepatosomatic index (HSI) and condition factor (CF) were all not significantly affected by dietary n-3 HUFA levels (P > 0.05). Weight gain (WG) and specific growth rate (SGR) in 1.35% group were significantly higher than those in 2.40% group (P < 0.05). Crude lipid of body in 1.00% group was significantly lower than that in 1.70% and 2.40% groups (P < 0.05). Liver and muscle fatty acid profiles reflected that of diets. Before challenge with Vibrio harveyi, the activity of serum superoxide dismutase (SOD), catalase (CAT) and content of complement 3 (C3) in 1.35% and 1.70% groups significantly higher than those of control group (P < 0.05). After challenge with Vibrio harveyi, serum CAT, glutathione peroxidase (GSH-PX), lysozyme (LZM) and C3 all increased sharply, while SOD showed the opposite trend. Before challenge with Vibrio harveyi, the expression levels of intestine toll-like receptor 22 (TLR22) and myeloid differentiation factor 88 (MyD88) mRNA in 2.40% group were significantly increased, and the expression levels of tumour necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) mRNA in 2.05% group were significantly higher than those in 1.00% and 1.35% groups (P < 0.05). In addition, the TLR22 and IL-1ß mRNA levels in kidney of 1.70% group were significantly lower than those in control group (P < 0.05). After challenge with Vibrio harveyi, the expression level of MyD88 mRNA in intestine of 1.35% group was significantly higher than that in 1.00% group and from 1.70% to 2.40% groups (P < 0.05), while TNF-α and IL-1ß obtained minimum values in 1.70% group. In the kidney, the interleukin 10 (IL10) mRNA expression was significantly higher in 1.70% group than that in other groups, while the IL-1ß expression in 1.70% group was on the contrary and significantly lower than that in 2.40% group (P < 0.05). Results of this study suggested that moderate dietary n-3 HUFA (1.47%-1.70% HUFA) could improve the growth performance, non-specific immunity and inhibit the inflammatory response of hybrid grouper.


Assuntos
Bass/imunologia , Resistência à Doença , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica , Imunidade Inata , Ração Animal/análise , Animais , Bass/genética , Bass/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos Insaturados/administração & dosagem , Doenças dos Peixes , Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Distribuição Aleatória , Vibrio , Vibrioses
15.
Fish Shellfish Immunol ; 107(Pt A): 346-356, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068761

RESUMO

This study was carried out to investigate the effects of dietary vitamin A (VA) on growth performance, antioxidant capacity, digestion, intestinal immune response, and mRNA expression of intestinal tight junction proteins for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Six isonitrogenous and isolipidic experimental diets were formulated to obtain VA levels (317, 1136, 2038, 4142, 7715, 15204 IU/kg diet, respectively). The triplicate groups of fish (average weight of 9.01 ± 0.27 g) were fed twice daily (8:00 and 16:00) for 7 weeks. Based on the broken-line analysis model of WG and LYZ activity, the dietary VA requirement of hybrid grouper were estimated to be 2688.58 and 4096.36 IU/kg diet. The results showed that VA deficiency or excess could reduce Weight gain, specific growth rate, and protein efficiency ratio, and increase feed conversion ratio and hepatosomatic index (P < 0.05). In addition, VA deficiency could reduce the serum activities of acid phosphatase (ACP), superoxide dismutase, and total antioxidant capacity and increase the malondialdehyde content (P < 0.05). VA deficiency also could reduce intestinal activities of ACP, alkaline phosphatase, lysozyme, complement 3, complement 4 contents, and activities of alpha-amylase, lipase, and trypsin (P < 0.05). Meanwhile, VA deficiency could reduce villus height in proximal intestine (PI) and mid intestine (MI), as well as muscle thickness in PI and distal intestine (DI) (P < 0.05). Moreover, VA deficiency could down-regulated antimicrobial peptides (ß-defensin, Hepcidin [not in MI and DI], Epinecidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor ß1 [not in DI]), tight junction proteins (occluding and claudin3) mRNA levels in the PI, MI and DI, and up-regulated pro-inflammatory cytokines (tumor necrosis factor α [not in MI] and interleukin 1ß [not in MI]), signaling molecules c-Rel and p65 (P < 0.05). Collectively, VA deficiency could reduce growth performance because of a negative effect on intestinal health by depressing digestive abilities, intestinal morphology, immunity and tight junction function in the intestine.


Assuntos
Bass , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Imunidade Inata/fisiologia , Intestinos/imunologia , Proteínas de Junções Íntimas/metabolismo , Deficiência de Vitamina A/veterinária , Animais , Bass/crescimento & desenvolvimento , Doenças dos Peixes/metabolismo , Distribuição Aleatória , Deficiência de Vitamina A/imunologia , Deficiência de Vitamina A/metabolismo
16.
Fish Shellfish Immunol ; 106: 341-356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739533

RESUMO

Fish fed a high plant protein diet exhibit intestinal inflammation, the mechanism of which needs to be clarified. We preliminarily elucidate the mechanism of the TLRs/MyD88-PI3K/Akt signalling pathway in intestinal inflammation induced by plant proteins. The diets contained 60% fish meal (FM, controls), or had 45% of the fish meal protein replaced by soybean meal (SBM), peanut meal (PM), cottonseed meal (CSM) or cottonseed protein concentrate (CPC). After an 8-week feeding trial, fish were challenged by injection of Vibrio parahaemolyticus bacteria for 7 days until the fish stabilized. The results showed that the specific growth rate (SGR) of the FM group was higher than other groups. The SGR of the CPC group was higher than those of the SBM, PM and CSM groups. The catalase (CAT) contents in the serum of fish fed a plant protein diet were higher than in FM fish. The abundances of Rhodobacteraceae and Microbacteriaceae in the MI (mid intestine) were higher in the CPC group. The TLR-2 expressions in the MI and DI of plant protein-fed fish were up-regulated. The expressions of IL-6 in the PI and MI, of hepcidin and TLR-3 in the MI, and of TLR-3 in the DI, were all lower than those of fish fed FM. In the PI, MI and DI, the protein expressions of P-PI3K/T-PI3K in the SBM and PM groups were higher than in the FM group. After the challenge, the cumulative mortalities in the FM and CPC groups were lower than those of the SBM, PM and CSM groups. These results suggested that plant protein diets reduced antioxidant capacity and glycolipid metabolism, hindered the development of the intestine and reduced intestinal flora diversity. TLR-3 is involved in the immune regulation of the PI in CPC group, MI and DI in SBM, PM, CSM and CPC groups, while might be involved in the immune regulation of the PI in SBM, PM and CSM groups. Furthermore, PI3K/Akt signaling does not participate in the regulation of PI and MI in the CSM group, MI and DI in the CPC group.


Assuntos
Bass/imunologia , Proteínas Alimentares/administração & dosagem , Doenças dos Peixes/imunologia , Inflamação/veterinária , Proteínas de Plantas/administração & dosagem , Vibrioses/veterinária , Animais , Inflamação/imunologia , Intestinos/imunologia , Vibrioses/imunologia , Vibrio parahaemolyticus/fisiologia
17.
Fish Shellfish Immunol ; 97: 216-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31857225

RESUMO

The aim of this study was to investigate the effects of dietary biotin deficiency on the growth performance and immune function of the head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). A total of 540 on-growing grass carp (117.11 ± 0.48 g) were fed six diets containing increasing levels of biotin (0.012, 0.110, 0.214, 0.311, 0.427 and 0.518 mg/kg diet) for 70 days. Subsequently, a challenge experiment was performed by infecting them with Aeromonas hydrophila for six days. Our results showed that compared with the appropriate biotin level, (1) biotin deficiency (0.012 mg/kg diet) reduced the activities of lysozyme (LZ) and acid phosphatase (ACP), decreased the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), as well as reduced the mRNA levels of antimicrobial peptides in the head kidney, spleen and skin of on-growing grass carp; (2) biotin deficiency reduced the mRNA levels of anti-microbial substances: liver-expressed antimicrobial peptide (LEAP) -2A, LEAP-2B, hepcidin, ß-defensin-1 and mucin 2 in the head kidney, spleen and skin of on-growing grass carp; (3) biotin deficiency increased the mRNA levels of pro-inflammatory cytokines interleukin 1ß (IL-1ß), IL-6, IL-8, IL-12p40, IL-15, IL-17D, tumour necrosis factor α (TNF-α) and interferon γ2 (IFN-γ2) partially in association with nuclear factor-kappa B (NF-κB) signalling and reduced anti-inflammatory IL-4/13A, IL-10, IL-11 and transforming growth factor ß1 (TGF-ß1) mRNA levels partially in association with target of rapamycin (TOR) signalling in the head kidney, spleen and skin of on-growing grass carp. Interestingly, biotin deficiency had no effect on the expression of IL-12p35, IL-4/13B, TGF-ß2, 4E-BP1 (skin only) or IKKα in the head kidney, spleen and skin of on-growing grass carp. In conclusion, the results indicated that biotin deficiency impaired the immune function of the head kidney, spleen and skin in fish. Finally, based on the percent weight gain (PWG), the ability to prevent skin haemorrhages and lesions, the LZ activity in the head kidney and the C4 content in the spleen, the optimal dietary biotin levels for on-growing grass carp (117-534 g) were estimated as 0.210, 0.230, 0.245 and 0.238 mg/kg diet, respectively.


Assuntos
Deficiência de Biotinidase/veterinária , Carpas , Doenças dos Peixes/imunologia , Rim Cefálico/imunologia , Imunidade Inata/efeitos dos fármacos , Pele/imunologia , Baço/imunologia , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Deficiência de Biotinidase/imunologia , Carpas/crescimento & desenvolvimento , Dieta/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária
18.
Fish Physiol Biochem ; 46(4): 1361-1374, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32221767

RESUMO

The present study aimed to investigate the dynamic process of soybean ß-conglycinin in digestion, absorption, and metabolism in the intestine of grass carp (Ctenopharyngodon idella). Fish fed with 80 g ß-conglycinin/kg diet for 7 weeks, the intestinal digestive enzyme was extracted to hydrolyze ß-conglycinin in vitro, the free amino acid and its metabolism product contents in intestinal segments were analyzed. The present study first found that ß-conglycinin cannot be thoroughly digested by fish intestine digestive enzyme and produces new products (about 60- and 55-kDa polypeptides). The indigestible ß-conglycinin further caused the free amino acid imbalance, especially caused free essential amino acid deficiency in the proximal intestine but excess in the distal intestine. Moreover, these results might be partly associated with the effect of ß-conglycinin in amino acid transporters and tight junction-regulated paracellular pathway. Finally, dietary ß-conglycinin increased the content of amino acid catabolism by-product ammonia while decreased the amino acid anabolism product carnosine content in the proximal intestine and distal intestine. Thus, the current study first and systemically explored the dynamic process of ß-conglycinin in digestion, absorption, and metabolism, which further supported our previous study that dietary ß-conglycinin suppressed fish growth and caused intestine injure.


Assuntos
Antígenos de Plantas/fisiologia , Carpas/fisiologia , Digestão/fisiologia , Absorção Gástrica/fisiologia , Globulinas/fisiologia , Intestinos/fisiologia , Proteínas de Armazenamento de Sementes/fisiologia , Proteínas de Soja/fisiologia , Sistemas de Transporte de Aminoácidos/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Antígenos de Plantas/administração & dosagem , Carpas/metabolismo , Dieta/veterinária , Eletroforese em Gel de Poliacrilamida , Globulinas/administração & dosagem , Hidrólise , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Armazenamento de Sementes/administração & dosagem , Proteínas de Soja/administração & dosagem , Proteínas de Junções Íntimas/efeitos dos fármacos , Proteínas de Junções Íntimas/genética
19.
Fish Physiol Biochem ; 46(4): 1409-1420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32240445

RESUMO

A 10-week feeding trial was conducted to investigate the effects of dietary carbohydrate-to-lipid (CHO:L) ratios on glycogen content, hematological indices, liver, and intestinal enzyme activity of sub-adult grouper Epinephelus coioides. Five iso-nitrogenous (496.0 g kg-1 protein) and iso-energetic (21.6 KJ g-1 gross energy) diets with varying CHO: L ratios of 0.65 (D1), 1.31 (D2), 2.33 (D3), 4.24 (D4), and 8.51 (D5), respectively, were fed to triplicate groups of 20 fish (average 275.1 ± 1.86 g). Results showed that the weight gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER) of sub-adult grouper increased and then stable when dietary CHO:L ratios reach D4 (CHO:L = 4.24). The trend of feed conversion ratio (FCR) was opposite to PER. Along with the dietary CHO:L ratios, the liver and muscle glycogen level increased gradually. Plasma triglycerides (TG) and glucose (GLU) were all maximized at D5 (CHO:L = 8.51) group, cholesterol (CHOL) at D4 (CHO:L = 4.24) group. Digestive enzyme activities were significantly affected by dietary CHO:L ratios. Liver hexokinase (HK), alkaline phosphatase (AKP), and glucose-6-phosphate dehydrogenase (G6PDH) activity increased significantly as CHO:L ratios increased. Liver lysozyme (LYZ) and superoxide dismutase (SOD) activity of sub-adult grouper fed the D4 diet was significantly higher than that of the D2 (CHO:L = 1.31) diet. The trend of acid phosphatase (ACP) is opposite to AKP. The regression model analysis showed that the most suitable dietary CHO:L ratio to reach the highest SGR is 6.06.


Assuntos
Bass/fisiologia , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Lipídeos/administração & dosagem , Análise de Variância , Animais , Bass/sangue , Bass/crescimento & desenvolvimento , Bass/imunologia , Correlação de Dados , Digestão/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Glicogênio/metabolismo , Sistema Imunitário/enzimologia , Fígado/metabolismo , Análise de Regressão
20.
Br J Nutr ; 122(7): 734-744, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32124713

RESUMO

An 8-week feeding experiment was conducted to investigate the effects of dl-methionine (Met) supplementation in a low-fishmeal diet on growth, key gene expressions of amino acid transporters and target of rapamycin (TOR) pathway in juvenile cobia, Rachycentron canadum. Seven isonitrogenous and isolipidic diets were formulated, containing 0·72, 0·90, 1·00, 1·24, 1·41, 1·63 and 1·86 % Met. Weight gain and specific growth rates increased gradually with Met levels of up to 1·24 % and then decreased gradually. In dorsal muscle, mRNA levels of ASCT2 in the 1·00 % Met group were significantly up-regulated compared with 0·72, 1·63, and 1·86 %. The insulin-like growth factor-I (IGF-I) mRNA levels in the dorsal muscle of fish fed 1·00 and 1·24 % Met were higher than those in fish fed other Met levels. In addition, fish fed 1·24 % Met showed the highest mRNA levels of TOR and phosphorylation of TOR on Ser2448. The phosphorylation of ribosomal p70-S6 kinase (S6K) on Ser371 in the dorsal muscle of fish fed 1·86 % Met was higher than those in the 0·72 % group. In conclusion, straight broken-line analysis of weight gain rate against dietary Met level indicates that the optimal Met requirement for juvenile cobia is 1·24 % (of DM, or 2·71 % dietary protein). Met supplementation in a low-fishmeal diet increased cobia growth via a mechanism that can partly be attributed to Met's ability to affect the TOR/S6K signalling pathway by enhancing ASCT2 and IGF-I transcription in cobia dorsal muscle.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Ração Animal , Produtos Pesqueiros , Peixes/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metionina/administração & dosagem , Músculos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Glicemia/análise , Peixes/crescimento & desenvolvimento , Expressão Gênica , Insulina/sangue , Fígado/metabolismo , Transdução de Sinais , Sirolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA