RESUMO
To address the plant adaptability of sorghum (Sorghum bicolor) in salinity, the research focus should shift from only selecting tolerant varieties to understanding the precise whole-plant genetic coping mechanisms with long-term influence on various phenotypes of interest to expanding salinity, improving water use, and ensuring nutrient use efficiency. In this review, we discovered that multiple genes may play pleiotropic regulatory roles in sorghum germination, growth, and development, salt stress response, forage value, and the web of signaling networks. The conserved domain and gene family analysis reveals a remarkable functional overlap among members of the bHLH (basic helix loop helix), WRKY (WRKY DNA-binding domain), and NAC (NAM, ATAF1/2, and CUC2) superfamilies. Shoot water and carbon partitioning, for example, are dominated by genes from the aquaporins and SWEET families, respectively. The gibberellin (GA) family of genes is prevalent during pre-saline exposure seed dormancy breaking and early embryo development at post-saline exposure. To improve the precision of the conventional method of determining silage harvest maturity time, we propose three phenotypes and their underlying genetic mechanisms: (i) the precise timing of transcriptional repression of cytokinin biosynthesis (IPT) and stay green (stg1 and stg2) genes; (ii) the transcriptional upregulation of the SbY1 gene and (iii) the transcriptional upregulation of the HSP90-6 gene responsible for grain filling with nutritive biochemicals. This work presents a potential resource for sorghum salt tolerance and genetic studies for forage and breeding.
Assuntos
Germinação , Sorghum , Sorghum/genética , Tolerância ao Sal , Melhoramento Vegetal , Grão Comestível , Solução SalinaRESUMO
This study aims to investigate the feasibility of combined segmentation for the separation of lesions from non-ablated regions, which allows surgeons to easily distinguish, measure, and evaluate the lesion area, thereby improving the quality of high-intensity focused-ultrasound (HIFU) surgery used for the non-invasive tumor treatment. Given that the flexible shape of the Gamma mixture model (GΓMM) fits the complex statistical distribution of samples, a method combining the GΓMM and Bayes framework is constructed for the classification of samples to obtain the segmentation result. An appropriate normalization range and parameters can be used to rapidly obtain a good performance of GΓMM segmentation. The performance values of the proposed method under four metrics (Dice score: 85%, Jaccard coefficient: 75%, recall: 86%, and accuracy: 96%) are better than those of conventional approaches including Otsu and Region growing. Furthermore, the statistical result of sample intensity indicates that the finding of the GΓMM is similar to that obtained by the manual method. These results indicate the stability and reliability of the GΓMM combined with the Bayes framework for the segmentation of HIFU lesions in ultrasound images. The experimental results show the possibility of combining the GΓMM with the Bayes framework to segment lesion areas and evaluate the effect of therapeutic ultrasound.
Assuntos
Algoritmos , Hipertermia Induzida , Teorema de Bayes , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in DMSO was performed over Nb2O5 derived from calcination of niobic acid at various temperatures (300-700 °C). The catalysts were characterized by powder X-ray diffraction, N2 physical adsorption, temperature-programed desorption of NH3, n-butylamine titration using Hammett indicators, infrared spectroscopy of adsorbed pyridine, and X-ray photoelectron spectroscopy. It was found that both catalytic activity and surface acid sites decrease with increasing calcination temperatures. The Nb2O5 derived from calcination of niobic acid at 400 °C reveals the maximum yield of HMF among all the catalysts, although the amount of acid sites on the catalyst is lower than that on the sample calcined at 300 °C. The results suggest that the presence of larger amounts of strong acid sites on the surface of the Nb2O5 calcined at 300 °C may promote side reactions. The Nb2O5 prepared at 400 °C shows 100% fructose conversion with 86.2% HMF yield in DMSO at 120 °C after 2 h. The activity of the catalyst decreases gradually during recycle because of coke deposition; however, it can be fully recovered by calcination at 400 °C for 2 h, suggesting that this catalyst is of significance for practical applications.