Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Ind Health ; 37(11): 685-694, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34644200

RESUMO

Formaldehyde (FA) causes neurotoxicity and contributes to the occurrence of neurodegenerative diseases. However, the mechanism of FA-induced neurotoxicity has not been fully elucidated. Ferritinophagy, an autophagy process of ferritin mediated by the nuclear receptor coactivator 4 (NCOA4), is a potential mechanism of neurotoxicity. In this study, we explored whether ferritinophagy is associated with the neurotoxicity of FA. Our results showed that FA (50, 100, 200 µM; 24 h) exposure upregulated ferritinophagy in the mouse hippocampal neuronal HT22 cells, which was evidenced by the upregulated autophagic flux, the increased colocalizations of NCOA4 with ferritin heavy chain (FTH1) and NCOA4 with microtubule-associated protein 1 light chain-3B (LC3B), the augmented expression of NCOA4, and the reduced content of FTH1. We also found that FA (0.1, 1, and 10 µmol, i.c.v., 7d) administration boosted ferritinophagy in the hippocampus of Sprague-Dawley (SD) rats, which was demonstrated by the accumulated autophagosomes, the increased expressions of LC3II/I and NCOA4, and the decreased contents of p62 and FTH1 in the hippocampus. Further, we confirmed that inhibition of ferritinophagy by silencing the expression of NCOA4 decreased FA-induced toxic damage in HT22 cells. These results indicated that FA induces neurotoxicity by promoting ferritinophagy. Our findings suggest a potential mechanism insight into the FA-induced neurotoxicity, which in turn provides a new thought for the treatment of FA-related neurodegenerative diseases.


Assuntos
Autofagia/efeitos dos fármacos , Ferritinas/metabolismo , Formaldeído/toxicidade , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Masculino , Camundongos , Coativadores de Receptor Nuclear , Ratos , Ratos Sprague-Dawley , Regulação para Cima
2.
Int J Med Sci ; 17(3): 310-319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132865

RESUMO

Homocysteine (Hcy) accelerates neuronal senescence and induces age-related neurodegenerative diseases. Silence signal regulating factor 1 (SIRT1) prolongs lifespan and takes neuroprotective effects. We have previously demonstrated that hydrogen sulfide (H2S) prevents Hcy-induced apoptosis of neuronal cells and has neuroprotective effect. In the present work, we aimed to investigate whether H2S protects HT22 cells against Hcy-induced neuronal senescence and whether SIRT1 mediates this role of H2S. We found that Hcy induced cellular senescence in HT22 cells, as determined by ß-galactosidase staining, expressions of P16INK4a, P21CIPL, and trypan blue Staining, which are the markers of cellular senescence. However, sodium hydrosulfide (NaHS, the donor of H2S) significantly reversed Hcy-induced cellular senescence. Interestingly, NaHS not only up-regulated the expression of SIRT1 in HT22 cells but also reversed Hcy-downregulated the expression of SIRT1 in HT22 cells. Furthermore, we found that pretreatment with Sirtinol (an inhibitor of SIRT1) markedly reversed the protection of NaHS against Hcy-induced HT22 cells senescence and apoptosis. Our findings illustrated that H2S protects HT22 cells against Hcy-induced senescence by up-regulating SIRT1.


Assuntos
Senescência Celular/efeitos dos fármacos , Homocisteína/farmacologia , Sulfeto de Hidrogênio/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sirtuína 1/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos
3.
Behav Brain Res ; 417: 113562, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34499939

RESUMO

BACKGROUND: Our previous works demonstrated that ß2-microglobulin (ß2m), a systemic pro-aging factor, induce depressive-like behaviors. Hydrogen sulfide (H2S) is identified as a potential target for treatment of depression. The aim of the present work is to explore whether H2S antagonizes ß2m-induced depressive-like behaviors and the underlying mechanisms. METHODS: The depressive-like behaviors were detected using the novelty suppressed feeding test (NSFT), tail suspension test (TST), forced swimming test (FST) and open field test (OFT). The expressions of Warburg-related proteins, including hexokinase II (HK II), pyruvate kinase M2 (PKM2), Lactate dehydrogenase A (LDHA), pyruvate dehydrogenase (PDH) and pyruvate dehydrogenase kinase 1(PDK1), and synaptic plasticity-related proteins, including postsynaptic density protein 95 (PSD95) and synaptophysin1 (SYN1), were determined by western blotting. RESULT: we found that NaHS (the donor of H2S) attenuated the depressive-like behaviors in the ß2m-exposed rats, as judged by NSFT, TST, FST, and OFT. We also demonstrated that NaHS enhanced the synaptic plasticity, as evidenced by the upregulations of PSD95 and SYN1 expressions in the hippocampus of ß2m-exposed rats. Furthermore, NaHS improved the Warburg effect in the hippocampus of ß2m-exposed rats, as evidenced by the upregulations of HK II, PKM2, LDHA and PDK1 expressions, and the downregulation of PDH expression. CONCLUSION: H2S prevents ß2m-induced depressive-like behaviors, which is involved in improvement of hippocampal synaptic plasticity as a result of enhancement of hippocampal Warburg effect.


Assuntos
Anormalidades Múltiplas , Catarata/congênito , Córnea/anormalidades , Depressão , Hipocampo/efeitos dos fármacos , Hipogonadismo , Deficiência Intelectual , Microcefalia , Plasticidade Neuronal/efeitos dos fármacos , Atrofia Óptica , Sulfetos/farmacologia , Microglobulina beta-2/efeitos adversos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley
4.
Toxicology ; 448: 152650, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33259821

RESUMO

The mechanisms underlying formaldehyde (FA)-induced neurotoxicity have not yet been fully clarified. Ferroptosis is a novel regulatory cell death and the Warburg effect is involved in regulating neural function. In this study, we investigated whether FA-induced neurotoxicity is implicated in neuronal ferroptosis and determined whether the Warburg effect mediates FA-induced neuronal ferroptosis. We found that FA (0.1, 0.5 and 1.0 mM, 6 h) induced cell death in HT22 cells (a cell line of mouse hippocampal neuron), as evidenced by a decrease in cell viability and an increase in cell mortality; enhanced oxidative stress, as evidenced by a decrease in glutathione (GSH) and increases in malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), as well as reactive oxygen species (ROS); increased the iron content; and upregulated the ferroptosis-associated genes, including Ptgs2 (prostaglandin-endoperoxide synthase 2), GLS2 (glutaminase 2), solute carrier family 1 member 5 (SLC1A5), and solute carrier family 38 member 1 (SLC38A1) in HT22 cells, indicating the inductive role of FA in the ferroptosis of HT22 cells. Meanwhile, we found that FA (0.1, 1, 10 µmol) decreased the cross-sectional of mitochondria, increased the level of lipid ROS and iron content in primary hippocampal cells. We showed that FA (0.1, 0.5 and 1.0 mM, 6 h) upregulated the Warburg effect in HT22 cells, as evidenced by up-regulations of pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK-1), and lactate dehydrogenase (LDHA) proteins; down-regulation of pyruvate dehydrogenase (PDH); and an increase in lactate production. Also, we found that FA (0.1, 1, 10 µmol, 7 d) upregulated the Warburg effect in hippocampal tissue, as evidenced by up-regulations of PKM2, PDK-1, and LDHA proteins; down-regulation of PDH. Furthermore, the inhibition of the Warburg effect by dichloroacetate (DCA) protected HT22 cells against FA-induced ferroptosis and cell death. Collectively, these data indicated that FA induces ferroptosis in hippocampal neuronal cells by upregulation of the Warburg effect.


Assuntos
Ferroptose/efeitos dos fármacos , Formaldeído/toxicidade , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Efeito Warburg em Oncologia/efeitos dos fármacos , Animais , Linhagem Celular , Desinfetantes/toxicidade , Ferroptose/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia
5.
Neurochem Int ; 135: 104692, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032636

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) has therapeutic effects on Parkinson's disease (PD). Warburg effect, namely aerobic glycolysis, is benefit to PD. Leptin, a hormone secreted in adipose, plays an important role in the treatment of PD. OBJECTIVE: To determine whether the mechanism underlying protection of H2S against PD is involved in promoting Warburg effect via upregulation of leptin. METHODS: We set a PD model via unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA) in Sprague Dawley rat. PD-like behavior was analyzed by apomorphine-induced rotations, open field activity test, stepping test and cylinder test. Dopaminergic neurons were detected by immunohistochemistry. The expressions of Hexokinase-2, pyruvate kinase M-2, lactate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase, and leptin were measured by Western blot. Lactate dehydrogenase (LDHA) activity was monitored by ELISA. The lactate content was measured by lactate assay kit. RESULTS: We showed that NaHS (a donor of H2S) prevented 6-OHDA-induced PD-like behaviors as well as the loss of dopaminergic neurons. We also found that NaHS enhanced the Warburg effect and upregulated leptin expression in the substantia nigra of 6-OHDA-exposed rats. While, inhibited leptin signaling by OBR13-A reversed the protections of H2S against 6-OHDA-exerted PD-like behaviors and the loss of dopaminergic neurons in the substantia nigra, and abolished H2S-enhanced in the Warburg effect in the substantia nigra. CONCLUSION: These data indicated that leptin mediates the protection of H2S against PD, which involves enhancing the Warburg effect of the substantia nigra.


Assuntos
Sulfeto de Hidrogênio/uso terapêutico , Leptina/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Efeito Warburg em Oncologia/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Sulfeto de Hidrogênio/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
6.
Front Psychol ; 10: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733697

RESUMO

Background and Aim: Sleep deprivation (SD) causes deficit of cognition, but the mechanisms remain to be fully established. Hydrogen sulfide (H2S) plays an important role in the formation of cognition, while excessive and prolonged autophagy in hippocampus triggers cognitive disorder. In this work, we proposed that disturbances in hippocampal endogenous H2S generation and autophagy might be involved in SD-induced cognitive impairment. Methods: After treatment of adult male wistar rats with 72-h SD, the Y-maze test, object location test (OLT), novel object recognition test (NORT) and the Morris water maze (MWM) test were performed to determine the cognitive function. The autophagosome formation was observed with electron microscope. Generation of endogenous H2S in the hippocampus of rats was detected using unisense H2S microsensor method. The expressions of cystathionine-ß-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), beclin-1, light chain LC3 II/LC3 I, and p62 in the hippocampus were assessed by western blotting. Results: The Y-maze, OLT, NORT, and MWM test demonstrated that SD-exposed rats exhibited cognitive dysfunction. SD triggered the elevation of hippocampal autophagy as evidenced by enhancement of autophagosome, up-regulations of beclin-1 and LC3 II/LC3 I, and down-regulation of p62. Meanwhile, the generation of endogenous H2S and the expressions of CBS and 3-MST (H2S producing enzyme) in the hippocampus of SD-treated rats were reduced. Conclusion: These results suggested that inhibition of endogenous H2S generation and excessiveness of autophagy in hippocampus are involved in SD-induced cognitive impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA