Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6337-6343, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38742772

RESUMO

The bulk photovoltaic effect (BPVE) offers an interesting approach to generate a steady photocurrent in a single-phase material under homogeneous illumination, and it has been extensively investigated in ferroelectrics exhibiting spontaneous polarization that breaks inversion symmetry. Flexoelectricity breaks inversion symmetry via a strain gradient in the otherwise nonpolar materials, enabling manipulation of ferroelectric order without an electric field. Combining these two effects, we demonstrate active mechanical control of BPVE in suspended 2-dimensional CuInP2S6 (CIPS) that is ferroelectric yet sensitive to electric field, which enables practical photodetection with an order of magnitude enhancement in performance. The suspended CIPS exhibits a 20-fold increase in photocurrent, which can be continuously modulated by either mechanical force or light polarization. The flexoelectrically engineered photodetection device, activated by air pressure and without any optimization, possesses a responsivity of 2.45 × 10-2 A/W and a detectivity of 1.73 × 1011 jones, which are superior to those of ferroelectric-based photodetection and comparable to those of the commercial Si photodiode.

2.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884449

RESUMO

Flowering time is one of the most important agronomic traits in wheat production. A proper flowering time might contribute to the reduction or avoidance of biotic and abiotic stresses, adjust plant architecture, and affect the yield and quality of grain. In this study, TaTOE1-B1 in wheat produced three transcripts (TaTOE1-B1-1, TaTOE1-B1-2, and TaTOE1-B1-3) by alternative splicing. Compared to the longest transcript, TaTOE1-B1-1, TaTOE1-B1-3 has a deletion in the sixth exon (1219-1264 bp). Under long-day conditions, the heterologous overexpression of the TaTOE1-B1-3 gene delayed flowering, prolonged the vegetative growth time, and enlarged the vegetative body of Arabidopsis, but that of TaTOE1-B1-1 did not. As typical AP2 family members, TaTOE1-B1-1 and TaTOE1-B1-3 are mainly located in the nucleus and have transcriptional activation activities; the transcriptional activation region of TaTOE1-B1-3 is located in the C-terminal. In TaTOE1-B1-3 overexpression lines, the expression of flowering-related AtFT and AtSOC1 genes is significantly downregulated. In addition, this study confirms the protein-protein interaction between TaTOE1-B1-3 and TaPIFI, which may play an important role in flowering inhibition. These results provide a theoretical basis for the precise regulation of wheat flowering time.


Assuntos
Arabidopsis/fisiologia , Fatores de Transcrição/genética , Triticum/metabolismo , Processamento Alternativo , Arabidopsis/genética , Clonagem Molecular , Biologia Computacional , Evolução Molecular , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/metabolismo , Triticum/genética
3.
Biochem Biophys Res Commun ; 490(3): 707-712, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28634077

RESUMO

DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease.


Assuntos
Fatores de Transcrição E2F/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Neoplasias/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Regulação para Cima
4.
Chem Commun (Camb) ; 56(66): 9497-9500, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32685955

RESUMO

Materials exhibiting both chirality and conductivity do not exist in nature and very few examples have been synthesised. We report here the synthesis of a chiral molecular metal which remains metallic down to at least 4.2 K. This material also exhibits room-temperature switching capabilities with a transition upon cooling below 10 °C.

5.
Sci China C Life Sci ; 49(1): 18-25, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16544572

RESUMO

The systematic or long-distance signal transmission plays crucial roles in animal lives. Compared with animals, however, much less is known about the roles of long-distance signal communication in plant lives. Using the model plant Commelina communis L., we have probed the root to shoot communication mediated by heat-shock signals. The results showed that a heat shock of 5 min at 40 degrees C in partial roots, i.e. half or even 1/4 root system, could lead to a significant decrease in stomatal conductance. The regulation capability depends on both heat shock temperature and the amount of root system, i.e. with higher temperature and more roots stressed, the leaf conductance would decrease more significantly. Interestingly, the stomatal regulation by heat shock signal is in a manner of oscillation: when stomata conductance decreased to the lowest level within about 30 min, it would increase rapidly and sometimes even exceed the initial level, and after several cycles the stomata conductance would be finally stabilized at a lower level. Feeding xylem sap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggesting that the heat shock-initiated signal is basically a positive signal. Further studies showed that heat shock was not able to affect ABA content in xylem sap, and also, not able to lead to a decrease in leaf water status, which suggested that the stomatal regulation was neither mediated by ABA nor by a hydraulic signal. Heat shock could lead to an increase in xylem sap H2O2 content, and moreover, the removal of H2O2 by catalase could partially recover the stomatal inhibition by xylem sap collected from heat-shocked plants, suggesting that H2O2 might be able to act as one of the root signals to control the stomatal movement. Due to the fact that heat-shock and drought are usually two concomitant stresses, the stomatal regulation by heat-shock signal should be of significance for plant response to stresses. The observation for the stomatal regulation in an oscillation manner by presently identified new signals should contribute to further understanding of the mystery for the pant systematic signaling in response to stresses.


Assuntos
Commelina/metabolismo , Temperatura Alta , Raízes de Plantas/metabolismo , Ácido Abscísico/farmacologia , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio
6.
Philos Trans A Math Phys Eng Sci ; 371(1995): 20120334, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23776300

RESUMO

Here, we recognize the growing significance of miniaturized devices as medical diagnostic tools and highlight the need to provide a convenient means of powering such instruments when implanted into the body. One of the most promising approaches to this end involves using a light-collection facility to absorb incident white light and transfer the photonic energy to a tiny semiconductor embedded on the device. Although fluorescent organic molecules offer strong potential as modules for such solar collectors, we emphasize the promise offered by transition metal complexes. Thus, an extended series of binuclear Ru(II)/Os(II) poly(pyridine) complexes has been shown to be highly promising sensitizers for amorphous silicon solar cells. These materials absorb a high fraction of visible light while the Ru(II)-based units possess triplet energies that are comparable to those of the naphthalene-based bridge. The metal complex injects a triplet exciton into the bridge and this, in turn, is trapped by the Os(II)-based terminal. The result is extremely efficacious triplet-energy transfer; at room temperature the rate of energy transfer is independent of distance over some 6 nm and only weakly dependent on temperature.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Elétrica , Próteses e Implantes , Semicondutores , Análise de Falha de Equipamento , Luz , Miniaturização , Desenho de Prótese
7.
Org Lett ; 14(2): 506-9, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22220836

RESUMO

The synthesis of a disulfide-strapped viologen derivative is described starting from 4,4'-bipyridinyl-3,3'-diol. The first two one-electron reduction potentials, as determined by cyclic voltammetry, occur at E(1/2) = -0.03 V and E(1/2) = -0.16 V vs Ag/AgCl. This is accompanied by two more well separated one-electron reductions at E(1/2) = -1.26 V and E(1/2) = -1.54 V vs Ag/AgCl and the breaking of the disulfide bridge. To alleviate electrostatic repulsion between the two thiolate ions the molecular system must twist or "spring open" to accommodate the final two electrons.

8.
Chemistry ; 13(36): 10194-203, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17957658

RESUMO

The synthesis is described for a small series of oligomers built from (2, 3, 4 or 6) ethynyl-naphthalene repeat units and end-capped with solubilising 1,2,3-tris-dodecyloxy-benzene groups. These compounds absorb in the near-UV region and exhibit strong fluorescence in both fluid solution and a glassy matrix at 77 K. The spectral profiles are fully consistent with a structurally heterogeneous ground state becoming more planar upon excitation and with the low-temperature glass further stabilising the co-planar orientation. The absorption and fluorescence maxima move towards lower energy with increasing number of repeat units and there is a corresponding increase in the Huang-Rhys factor for the radiative process. The non-radiative rate constants also depend on molecular length and are well explained in terms of the energy-gap law. In contrast, very weak phosphorescence is observed at 77 K for which the peak maximum and lifetime remain insensitive to the number of naphthalene units. The triplet lifetimes recorded at ambient temperature are also independent of the molecular length but the triplet-triplet absorption spectra change throughout the series. These results are discussed in terms of the degree of electronic coupling between adjacent repeat units for each of the relevant excited states. During these studies it was noted that the rate of intersystem crossing to the triplet manifold is but weakly affected by heavy-atom perturbers. A non-fluorescent complex is formed between iodoethane and the molecular rod but the corresponding bimolecular process occurs at well below the diffusion-controlled limit. This behaviour is considered in terms of spin-orbit coupling between the excited states and takes account of the differing conjugation lengths.

9.
Chem Soc Rev ; 33(2): 85-97, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14767504

RESUMO

Organic photochromic materials have received considerable attention because of their potential for photonic applications, especially for fast and high density data storage. In 2000, Chemical Reviews published a special issue on photochromic materials including a review about the properties and applications of diarylethene photochromic compounds. Since then much impressive progress has been made in this area. Various new diarylethene derivatives have been prepared and examined. The tutorial review presented herein describes developments in diarylethene-based molecular switches made in the last three years. In addition, the synthetic aspects of diarylethene photochromic compounds, which are important issues and neglected in most previous reviews, have been included.


Assuntos
Etilenos/química , Fotoquímica , Cristalização , Etilenos/síntese química , Modelos Químicos , Estrutura Molecular , Compostos Organometálicos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA