Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nat Immunol ; 16(11): 1185-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437241

RESUMO

Smoking-related emphysema is a chronic inflammatory disease driven by the T(H)17 subset of helper T cells through molecular mechanisms that remain obscure. Here we explored the role of the microRNA miR-22 in emphysema. We found that miR-22 was upregulated in lung myeloid dendritic cells (mDCs) of smokers with emphysema and antigen-presenting cells (APCs) of mice exposed to smoke or nanoparticulate carbon black (nCB) through a mechanism that involved the transcription factor NF-κB. Mice deficient in miR-22, but not wild-type mice, showed attenuated T(H)17 responses and failed to develop emphysema after exposure to smoke or nCB. We further found that miR-22 controlled the activation of APCs and T(H)17 responses through the activation of AP-1 transcription factor complexes and the histone deacetylase HDAC4. Thus, miR-22 is a critical regulator of both emphysema and T(H)17 responses.


Assuntos
Enfisema/etiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Enfisema/imunologia , Enfisema/metabolismo , Histona Desacetilases/metabolismo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fumar/efeitos adversos , Fuligem/toxicidade , Células Th17/metabolismo , Fator de Transcrição AP-1/metabolismo
2.
J Neurosci ; 43(49): 8442-8455, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37848283

RESUMO

Mentalizing is a core faculty of human social behaviors that involves inferring the cognitive states of others. This process necessitates adopting an allocentric perspective and suppressing one's egocentric perspective, referred to as self-other distinction (SOD). Meanwhile, individuals may project their own cognitive states onto others in prosocial behaviors, a process known as self-other mergence (SOM). It remains unclear how the two opposing processes coexist during mentalizing. We here combined functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) techniques with intranasal oxytocin (OTint) as a probe to examine the SOM effect in healthy male human participants, during which they attributed the cognitive states of decision confidence to an anonymous partner. Our results showed that OTint facilitated SOM via the left temporoparietal junction (lTPJ), but did not affect neural representations of internal information about others' confidence in the dorsomedial prefrontal cortex, which might be dedicated to SOD, although the two brain regions, importantly, have been suggested to be involved in mentalizing. Further, the SOM effect induced by OTint was fully mediated by the lTPJ activities and became weakened when the lTPJ activities were suppressed by rTMS. These findings suggest that the lTPJ might play a vital role in mediating SOM during mentalizing.SIGNIFICANCE STATEMENT Every human mind is unique. It is critical to distinguish the minds of others from the self. On the contrary, we often project the current mental states of the self onto others; that is to say, self-other mergence (SOM). The neural mechanism underlying SOM remains unclear. We here used intranasal oxytocin (OTint) as a probe to leverage SOM, which is typically suppressed during mentalizing. We revealed that OTint specifically modulated the left temporoparietal junction (lTPJ) neural activities to fully mediate the SOM effect, while suppressing the lTPJ neural activities by transcranial magnetic stimulations causally attenuated the SOM effect. Our results demonstrate that the lTPJ might mediate SOM during social interactions.


Assuntos
Mentalização , Teoria da Mente , Humanos , Masculino , Ocitocina , Estimulação Magnética Transcraniana/métodos , Encéfalo , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Teoria da Mente/fisiologia
3.
Pharmacol Res ; 206: 107268, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908614

RESUMO

Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.

4.
J Environ Sci (China) ; 145: 75-87, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844325

RESUMO

Prednisone is a synthetic glucocorticoid that is commonly used in both human and veterinary medication. Now, it is also recognized as an emerging environmental contaminant. Pregnant women may be exposed to prednisone actively or passively through multiple pathways and cause developmental toxicity to the fetus. However, the impact of prenatal prednisone exposure (PPE) on fetal kidney development remains unclear. In this study, pregnant mice were administered prednisone intragastrically during full-term pregnancy with different doses (0.25, 0.5, or 1 mg/(kg·day)), or at the dose of 1 mg/(kg·day) in different gestational days (GD) (GD0-9, GD10-18, or GD0-18). The pregnant mice were euthanized on GD18. HE staining revealed fetal kidney dysplasia, with an enlarged glomerular Bowman's capsule space and a reduced capillary network in the PPE groups. The expression of the podocyte and the mesangial cell marker genes was significantly reduced in the PPE groups. However, overall gene expression in renal tubules and collecting ducts were markedly increased. All of the above effects were more pronounced in high-dose, full-term pregnancy, and female fetuses. Studies on the mechanism of the female fetal kidney have revealed that PPE reduced the expression of Six2, increased the expression of Hnf1ß, Hnf4α, and Wnt9b, and inhibited the expression of glial cell line-derived neurotrophic factor (GDNF) and Notch signaling pathways. In conclusion, this study demonstrated that there is a sex difference in the developmental toxicity of PPE to the fetal kidney, and the time effect is manifested as full-term pregnancy > early pregnancy > mid-late pregnancy.


Assuntos
Rim , Prednisona , Feminino , Animais , Gravidez , Camundongos , Rim/efeitos dos fármacos , Rim/embriologia , Prednisona/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna/efeitos adversos
5.
Carcinogenesis ; 43(12): 1110-1120, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36422008

RESUMO

Ehm2/1, an Ehm2 transcript variant, regulates the cytoskeleton by binding to plasma membrane proteins. However, the role of Ehm2/1 in breast cancer development remains poorly understood. This study shows that, the expression of Ehm2/1 was decreased in breast cancer and that patients with low Ehm2/1 expression had a significantly poorer prognosis than those with high expression of Ehm2/1. Overexpression of Ehm2/1 in MCF-7 breast cancer cells inhibited cell migration and invasion. Ehm2/1 markedly increased the stability and half-life of E-cadherin. Moreover, Ehm2/1 was collocated with E-cadherin in the plasma membrane of MCF-7 cells. Furthermore, downregulation of Ehm2/1 promoted ubiquitination of E-cadherin, whereas overexpression of Ehm2/1 inhibited ubiquitination of E-cadherin. These results suggest that Ehm2/1 could suppress the migration and invasion of breast cancer cells by increasing E-cadherin stability.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7
6.
J Transl Med ; 18(1): 175, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312307

RESUMO

BACKGROUND: Kidney ischemia reperfusion injury (IRI) is a common cause of acute kidney injury and an unavoidable consequence of kidney transplantation and still lacks specific therapeutics. Recently, mesenchymal stem cell (MSC) has been emerging as a promising cell-based therapy for IRI in the context of transplantation. MSC negatively regulates the secretion of pro-inflammatory as well as the activation of immune cells during IRI through its unique immunosuppressive property. METHODS: We employed mice kidney IRI model and MSC cell line to monitor the IRI related checkpoints. siRNAs were utilized to knock down the potential key factors for mechanistic analysis. Statistical analysis was performed by using one-way ANOVA with Tukey's post hoc procedure by SPSS. RESULTS: The expression of high-mobility group box 1 protein (HMGB1) is increased in the acute phase as well as the recovery stage of IRI. Importantly, the HMGB1 upregulation is correlated with the injury severity. HMGB1 diminishes the MSC induced immunosuppressive capacity in the presence of pro-inflammatory cytokines in vitro. Toll like receptor 4 (TLR4)-mediated inducible nitric oxide synthase (iNOS) inhibition contributes to the negative effect of HMGB1 on MSCs. HMGB1-TLR4 signaling inhibition augments the therapeutic efficacy of MSCs in mice renal IRI model. CONCLUSIONS: These findings demonstrate that HMGB1 plays a crucial role in shaping the immunoregulatory property of MSCs within the microenvironments, providing novel insights into the crosstalk between MSCs and microenvironment components, suggesting HMGB1 signals as a promising target to improve MSC-based therapy.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Injúria Renal Aguda/terapia , Animais , Rim , Camundongos , Traumatismo por Reperfusão/terapia
7.
J Cell Physiol ; 234(4): 4095-4103, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30144391

RESUMO

Selenium and selenoproteins are identified as potential determinants in pathological cellular hypertrophy. Cardiomyocytes hypertrophy is a compensatory form of heart disease characterized by increased size of cardiomyocytes. However, the link between cardiac hypertrophy and Se-specific microRNA (miRNA) remains to be characterized. In the current study, we established a miR-200a-5p mimic and an inhibitor cardiomyocytes model. Cardiomyocytes hypertrophy was induced in the miR-200a-5p mimic group. Hence, we detected the glucose level of cardiomyocytes to estimate the cellular glucose uptake. The effect of miR-200a-5p overexpression and the low expression on 25 selenoproteins mRNA levels was further explored using reverse transcription polymerase chain reaction. Overexpression of miR-200a-5p elevated glucose uptake and Txnrd2, 3 expression and reduced Sepp1, Seln, Selt, and Sep15 expression in cardiomyocytes. Contrary results were observed in cardiomyocytes with the knockdown of miR-200a-5p. We next assessed glucose metabolism-related genes in cardiomyocytes. The results showed that miR-200a-5p had a negative correlation with insulin-like growth factor gene-1, insulin-like growth factor binding protein (IGFBP)1, IGFBP2, IGFBP3, IGFBP4, and IGFBP5 and had a positive correlation with Akt, glucose transporter family (GLUT)2, GLUT3, and GLUT4. These results support the involvement of selenoproteins and glucose metabolism in the control of cardiomyocytes hypertrophy by Se-specific miRNA, suggesting that miR-200a-5p inhibited the expression of stress-related selenoproteins to alter glucose transport leading to glucose metabolism disorder, eventually inducing cardiomyocytes hypertrophy. Our finding highlights a pivotal role of Se-specific miRNA and selenoproteins in cardiac hypertrophy.


Assuntos
Proteínas Aviárias/metabolismo , Cardiomegalia/metabolismo , Crescimento Celular , Glucose/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Selenoproteínas/metabolismo , Animais , Proteínas Aviárias/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica , MicroRNAs/genética , Miócitos Cardíacos/patologia , Selenoproteínas/genética , Transdução de Sinais
8.
Ecotoxicol Environ Saf ; 175: 74-82, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30889402

RESUMO

Lead (Pb) is a type of toxic metal that can hurt the immune system. Selenium (Se) can reduce the damage caused by heavy metals. To investigate the effects of Se against Pb on bird immune cells, as well as the immunotoxin mechanism of Pb, Se supplementation and/or Pb poisoning chicken models were established. One hundred eighty 1-year-old broiler chickens were randomly divided into four groups (n = 6). The four groups were the control group, the selenium-rich group (Se group), the Pb supplementation group (Pb group) and the Se and Pb compound group (Se + Pb group). The peripheral blood lymphocytes of chickens were collected to test the selenoproteins and cytokine mRNA levels at 30 and 60 d. Determination of the content of Se and Pb in the serum, principal component analysis and ingenuity pathway analysis were performed at the two time points. As a result, Pb exposure increased the content of Pb, activating the Th1/Th2 pathway in peripheral blood lymphocytes. Additionally, this experiment showed that Se supplementation and Pb exposure could influence the mRNA levels of selenoproteins and cytokines in the peripheral blood lymphocytes of chickens. However, all of the parameters that we detected in the experiment indicated that Se supplementation could alleviate the increase of selenoproteins and cytokine mRNA levels and the Th1/Th2 imbalance induced by Pb in peripheral blood lymphocytes. In summary, Se can alleviate the toxic effects caused by Pb in the peripheral blood lymphocytes of chickens, suggesting the antagonism between Se and Pb.


Assuntos
Galinhas/imunologia , Chumbo/toxicidade , Selênio/metabolismo , Equilíbrio Th1-Th2/efeitos dos fármacos , Animais , Galinhas/metabolismo , Citocinas/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , RNA Mensageiro/metabolismo , Distribuição Aleatória , Selenoproteínas/metabolismo
9.
Biochem Biophys Res Commun ; 503(2): 757-762, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29913150

RESUMO

Pulmonary fibrosis (PF) is a fatal respiratory disease with no effective medical treatments available. TGF-ß/Smads signaling has been implicated to play an essential in the pathogenesis of PF, in which Smad3 act as the integrator of pro-fibrosis signals. In this study, we determined the effect of SIS3, a specific inhibitor of Smad3, in an experimental mouse model of lung fibrosis. We observed that SIS3 treatment significantly reduced bleomycin (BLM)-induced pathological changes and collagen deposition in the lung as indicated by Masson staining, real-time PCR and hydroxyproline content assay. As expected, the levels of Smad3 phosphorylation were decreased in the lung of mice treated with SIS3. Furthermore, SIS3 treatment also suppressed BLM-induced infiltration of inflammatory cells in the lung. Taken together, our results suggest that SIS3 ameliorated BLM-induced PF in mouse lungs. Thus, targeting Smad3 with SIS3 may be an effective approach for treatment of fibrotic disorders.


Assuntos
Isoquinolinas/uso terapêutico , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Piridinas/uso terapêutico , Pirróis/uso terapêutico , Proteína Smad3/antagonistas & inibidores , Animais , Bleomicina , Colágeno Tipo I/análise , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Proteína Smad3/análise
10.
Biochem Biophys Res Commun ; 485(2): 563-568, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816450

RESUMO

Listeria monocytogenes is a Gram-positive intracellular bacterium that was transmitted through contaminated food and causes sepsis and even death. IL-37 has been described as an important anti-inflammatory factor, but little is known about the function of IL-37 in host defense against Liseria monocytogenes (Lm) infection. In mice model of systemic infection, we found that mice treated with IL-37 were more sensitive to Lm infection compared with PBS-treated mice. This reduced resistance to Lm in IL-37-treated mice is accompanied with increased bacterial burden and liver damage. Serum levels of colony-stimulating factors were decreased in IL-37-treated mice. IL-37 treatment reduced bactericidal ability of bone marrow derived macrophages (BMDMs) in vitro, which contribute to the inability of IL-37-treated mice to combat Lm infection. Furthermore, increased apoptosis was observed in Lm-infected macrophages treated with IL-37. Increased macrophage apoptosis reduced percentage in liver macrophages was observed in IL-37-treated mice following Lm infection. These results indicate the negative regulatory effect of IL-37 on host resistance during immune defense against Lm.


Assuntos
Resistência à Doença/efeitos dos fármacos , Interleucina-1/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeriose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carga Bacteriana/efeitos dos fármacos , Células Cultivadas , Citocinas/sangue , Modelos Animais de Doenças , Resistência à Doença/imunologia , Citometria de Fluxo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Listeria monocytogenes/imunologia , Listeria monocytogenes/fisiologia , Listeriose/sangue , Listeriose/microbiologia , Fígado/efeitos dos fármacos , Fígado/microbiologia , Fígado/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Análise de Sobrevida
11.
Arterioscler Thromb Vasc Biol ; 35(12): 2638-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26515414

RESUMO

OBJECTIVE: Angiogenesis is tightly controlled by growth factors and cytokines in pathophysiological settings. Interleukin 37 (IL-37) is a newly identified cytokine of the IL-1 family, some members of which are important in inflammation and angiogenesis. However, the function of IL-37 in angiogenesis remains unknown. We aimed to explore the regulatory role of IL-37 in pathological and physiological angiogenesis. APPROACH AND RESULTS: We found that IL-37 was expressed and secreted in endothelial cells and upregulated under hypoxic conditions. IL-37 enhanced endothelial cell proliferation, capillary formation, migration, and vessel sprouting from aortic rings with potency comparable with that of vascular endothelial growth factor. IL-37 activates survival signals including extracellular signal-regulated kinase 1/2 and AKT in endothelial cells. IL-37 promoted vessel growth in implanted Matrigel plug in vivo in a dose-dependent manner with potency comparable with that of basic fibroblast growth factor. In the mouse model of retinal vascular development, neonatal mice administrated with IL-37 displayed increased neovascularization. We demonstrated further that IL-37 promoted pathological angiogenesis in the mouse model of oxygen-induced retinopathy. CONCLUSIONS: Our findings suggest that IL-37 is a novel and potent proangiogenic cytokine with essential role in pathophy siological settings.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Interleucina-1/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Retiniana/induzido quimicamente , Retinopatia da Prematuridade/induzido quimicamente , Animais , Animais Recém-Nascidos , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1/metabolismo , Interleucina-1/toxicidade , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Fatores de Tempo , Transfecção
12.
Biometals ; 29(4): 679-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27344320

RESUMO

The aim of the present study was to clarify the effect of Selenoprotein K (Selk) silencing on the mRNA expression of 25 selenoproteins in chicken myoblasts. The specific small interfering RNA (siRNA) for Selk gene was designed and transfected into chicken myoblasts. Post-transfection mRNA expression of 25 selenoproteins was determined at various time periods i.e., 24, 48 and 72 h. Moreover, based on the results of expression of 25 selenoproteins, correlation analysis and principal component analysis (PCA) were used for further analysis. The results showed that the designed siRNA effectively inhibited Selk expression (decreased by 20, 29 and 43 % on 24, 48 and 72 h, respectively) and the mRNA expression levels of the 23 selenoproteins were influenced by silencing Selk differently (P < 0.05). Time-dependent pattern of mRNA expression after siRNA treatment in three groups were found similar: one group including Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Sepw1, Selh, Sepp1, Selo and Sepx1, another group including Sepn1, Sels, Selt, Selm and Sep15 and other group including Dio2 and Dio3. The results of correlation analysis showed that Gpx1, Gpx2, Gpx3, Gpx4, Dio1, Dio3, Sepn1, Sels, Sepw1, Selt, Selh, Sep15, Seli and Selu had a positive correlation with Selk, while Dio2 and Sepp1 had a negative correlation with Selk. PCA data also indicated that Txnrd1, Txnrd2, Dio2, Selpb, Sepp1and Selo may play special roles in response to Selk silencing. In summary, these results indicated that different selenoproteins possess and exhibits distinct responses to silencing of Selk in chicken myoblasts.


Assuntos
Inativação Gênica , Mioblastos/metabolismo , Selenoproteínas/genética , Animais , Células Cultivadas , Galinhas , Perfilação da Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Mioblastos/citologia , Análise de Componente Principal , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Selenoproteínas/antagonistas & inibidores , Selenoproteínas/metabolismo , Fatores de Tempo
13.
BMC Cardiovasc Disord ; 16: 153, 2016 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-27422557

RESUMO

BACKGROUND: Restenosis remains to be a major limitation of percutaneous transluminal angioplasty (PTA) for diabetic patients with peripheral vascular disease (PVD). Despite of stations routine implements to prevent such progress, its exact effect is unclear. METHODS AND RESULTS: In our study, balloon was successfully implanted in the iliac artery of atherosclerotic rabbit. Patency of the narrowed artery was interrogated using ultrasound. Atorvastatin or vehicle was administered orally to rabbits from day 0 to day 28 after double-injury surgery. On day 7, day 14, and day 28, restenotic arteries were harvested and processed for histopathlogical analysis. Our data show that, after double-injury surgery, the intima was composed mostly by SMCs at all time course in rabbits undergoing surgery process. Significant increases in stenosis rates were noted from day 7 to day 14 (from 21 ± 5.85 % to 60.93 ± 12.46 %). On day 28 after double-injury surgery, severe restenosis was observed and daily administration of atorvastatin cannot prevent restenosis' formation (88.69 ± 3.71 % vs. 90.02 ± 3.11 %, P > 0.05). The PCNA index and SMCs proliferation were correlated with the scores of the vascular pathology. CONCLUSIONS: Our results indicate that double-injury model can mimic clinical restenosis, based on this model, atorvastatin showed no therapeutic effect on restenosis process in diabetic rabbits after PTA.


Assuntos
Angioplastia com Balão/efeitos adversos , Aterosclerose/terapia , Atorvastatina/farmacologia , Diabetes Mellitus Experimental/complicações , Artéria Ilíaca/efeitos dos fármacos , Lesões do Sistema Vascular/tratamento farmacológico , Animais , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Constrição Patológica , Modelos Animais de Doenças , Artéria Ilíaca/lesões , Artéria Ilíaca/patologia , Artéria Ilíaca/fisiopatologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima , Coelhos , Recidiva , Fatores de Tempo , Grau de Desobstrução Vascular/efeitos dos fármacos , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologia
14.
Opt Express ; 22(17): 20473-80, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321254

RESUMO

Light trapping is essential to improve the performance of thin-film solar cells. In this paper, we performed a parametric optimization of nanopyramids and rear-located Ag nanoparticles that act as light trapping scheme to increase light absorption in thin-film c-Si solar cells. Our optimization reveals that the short-circuit current density in a solar cell employing only 5 µm silicon could exceed that of a standard 300 µm c-silicon wafer-based cell. Furthermore, we analyzed the underlying physics of the light absorption enhancement through the electric field intensity profiles.

15.
RSC Adv ; 14(11): 7430-7439, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38433944

RESUMO

Hydrotalcite intercalated nanohybrid has served as a vital phosphorescent photosensitizer owing to remarkable 1O2 quantum yield and high cell mortality performance. However, it is rather difficult for potential large or complex guest phosphors to directly intercalate into the hydrotalcite gallery. Hence, it is necessary to regulate the interlayer microenvironment of hydrotalcites firstly for outstanding photosensitive properties. Herein, two isomers, 5,5'BDA and 4,4'BDA, with distinctive dual coordinative features were selected to modify the layer microenvironment of the LGdH gallery and induce the introduction of prospective Gd(HPhN)3 phosphorescent complexes into hydrotalcite through two different coordination effects successively. A LGdH-BDA-Gd(HPhN)3 intercalated nanohybrid phosphorescent photosensitizer was successfully obtained. The results indicated that the more efficient improvement was observed from 5,5'BDA due to offering a more spacious and stable space. Specifically, LGdH-5,5'BDA-Gd(HPhN)3 showed significantly better room temperature phosphorescence properties than LGdH-4,4'BDA-Gd(HPhN)3, whose lifetime was nearly 15 times longer than the latter. Additionally, the LGdH-5,5'BDA-Gd(HPhN)3 system displayed superior singlet oxygen generation in vitro under 460 nm irradiation (the quantum yield Φ = 0.48) and outstanding photodynamic therapy performance in tumor cells. LGdH presented more remarkable enhancement performance on the RTP properties of the luminescent molecules. This work provides a novel platform for designing a high-performance hydrotalcite intercalated nanohybrid phosphorescent photosensitizer through coordination induction to regulate the layer microenvironment.

16.
Phytomedicine ; 125: 155357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295662

RESUMO

BACKGROUND: The terminal stage of all cardiovascular diseases typically culminates in heart failure (HF), with no effective intervention available to halt its progression. LuQi formula (LQF) has been employed in clinical for numerous years to significantly ameliorate cardiac function in HF patients. Nevertheless, the underlying mechanism of LQF's efficacy remains inadequately comprehended. Cardiomyocyte ferroptosis has served as a pathogenic mechanism in HF. The goal of the current experiment was to ascertain whether LQF ameliorates HF by preventing cardiomyocyte ferroptosis and to elucidate the intrinsic mechanism involved. PURPOSE: This research objective is to investigate the impact and underlying mechanism of LQF attenuating cardiomyocyte ferroptosis in heart failure. METHODS: Transverse aortic constriction (TAC) was performed to construct the HF mouse model. Neonatal rat cardiomyocytes (NRCMs) were subjected to in vitro experiments. High-performance liquid chromatography (HPLC) identified the bioactive compounds in LQF. Transcriptomic and quantitative proteomic analyses revealed the potential targets of LQF anti-HF. Specifically, histological staining evaluated cardiac hypertrophy and fibrosis. Transmission electron microscopy (TEM) observed mitochondrial morphology. The content of Fe2+, ROS, MDA, GSH, and GSSH was detected using kits. Molecular docking evaluated the binding activities between essential active ingredients of LQF and critical proteins of cardiomyocyte ferroptosis. Mechanistically, the expression levels of Nrf2, Keap1, HO-1, SLC7A11, and GPX4 were evaluated using qPCR, Western blot (WB), or immunohistochemical staining. RESULTS: The primary nine active ingredients in LQF were detected. Transcriptomic and proteomic analyses demonstrated that LQF may ameliorate HF by preventing cardiomyocyte ferroptosis. Histomorphometric analyses revealed that LQF attenuates myocardial hypertrophy and fibrosis. TEM revealed that LQF diminished mitochondrial shrinkage and increased membrane density in myocardial tissue. Additionally, LQF diminished reactive oxygen species (ROS) generation in cardiomyocytes and suppressed cardiomyocyte ferroptosis. Furthermore, the molecular docking technique revealed that the primary active ingredients of LQF had suitable binding activities with Nrf2, GPX4, and SLC7A11. Western analysis further verified that LQF activated the Nrf2/GPX4 signaling axis. decreased SLC7A11 and HO-1 expression. CONCLUSIONS: These results demonstrated that LQF prevents cardiomyocyte ferroptosis via activating Nrf2/GPX4 signaling axis and suppressing SLC7A11 and HO-1 expression. Concurrently, it contributed to elucidating the intrinsic mechanism of LQF and provided a scientific rationale for its development as a novel cardiovascular therapeutic drug.


Assuntos
Fármacos Cardiovasculares , Ferroptose , Insuficiência Cardíaca , Camundongos , Humanos , Animais , Ratos , Miócitos Cardíacos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Simulação de Acoplamento Molecular , Proteômica , Espécies Reativas de Oxigênio , Insuficiência Cardíaca/tratamento farmacológico , Fibrose
17.
Insights Imaging ; 15(1): 156, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900336

RESUMO

OBJECTIVE: To assess renal interstitial fibrosis (IF) using diffusion MRI approaches, and explore whether corticomedullary difference (CMD) of diffusion parameters, combination among MRI parameters, or combination with estimated glomerular filtration rate (eGFR) benefit IF evaluation. METHODS: Forty-two patients with chronic kidney disease were included, undergoing MRI examinations. MRI parameters from apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and diffusion-relaxation correlated spectrum imaging (DR-CSI) were obtained both for renal cortex and medulla. CMD of these parameters was calculated. Pathological IF scores (1-3) were obtained by biopsy. Patients were divided into mild (IF = 1, n = 23) and moderate-severe fibrosis (IF = 2-3, n = 19) groups. Group comparisons for MRI parameters were performed. Diagnostic performances were assessed by the receiver operator's curve analysis for discriminating mild from moderate-severe IF patients. RESULTS: Significant inter-group differences existed for cortical ADC, IVIM-D, IVIM-f, DKI-MD, DR-CSI VB, and DR-CSI VC. Significant inter-group differences existed in ΔADC, ΔMD, ΔVB, ΔVC, ΔQB, and ΔQC. Among the cortical MRI parameters, VB displayed the highest AUC = 0.849, while ADC, f, and MD also showed AUC > 0.8. After combining cortical value and CMD, the diagnostic performances of the MRI parameters were slightly improved except for IVIM-D. Combining VB with f brings the best performance (AUC = 0.903) among MRI bi-variant models. A combination of cortical VB, ΔADC, and eGFR brought obvious improvement in diagnostic performance (AUC 0.963 vs 0.879, specificity 0.826 vs 0.896, and sensitivity 1.000 vs 0.842) than eGFR alone. CONCLUSION: Our study shows promising results for the assessment of renal IF using diffusion MRI approaches. CRITICAL RELEVANCE STATEMENT: Our study explores the non-invasive assessment of renal IF, an independent and effective predictor of renal outcomes, by comparing and combining diffusion MRI approaches including compartmental, non-compartmental, and model-free approaches. KEY POINTS: Significant difference exists for diffusion parameters between mild and moderate-severe IF. Generally, cortical parameters show better performance than corresponding CMD. Bi-variant model lifts the diagnostic performance for assessing IF.

18.
Protein Cell ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476024

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) promotes the development and metastasis of estrogen receptor alpha (ERα)-positive breast cancer. The function of CARM1 in triple-negative breast cancer (TNBC) is still unclear and requires further exploration. Here, we report that CARM1 promotes proliferation, epithelial-mesenchymal transition (EMT), and stemness in TNBC. CARM1 is upregulated in multiple cancers and its expression correlates with breast cancer progression. Genome-wide analysis of CARM1 showed that CARM1 is recruited by hypoxia-inducible factor 1 subunit alpha (HIF1A) and occupy the promoters of CDK4, Cyclin D1, ß-catenin, HIF1A, MALAT1, and SIX1 critically involved in cell cycle, HIF-1 signaling pathway, Wnt signaling pathway, VEGF signaling pathway, thereby modulating the proliferation and invasion of TNBC cells. We demonstrated that CARM1 is physically associated with and directly interacts with HIF1A. Moreover, we found that ellagic acid, an inhibitor of CARM1, can suppress the proliferation and metastasis of TNBC by directly inhibiting CDK4 expression. Our research has determined the molecular basis of CARM1 carcinogenesis in TNBC and its effective natural inhibitor, which may provide new ideas and drugs for cancer therapy.

19.
Nat Commun ; 15(1): 1657, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395893

RESUMO

Gastric cancer (GC) represents a significant burden of cancer-related mortality worldwide, underscoring an urgent need for the development of early detection strategies and precise postoperative interventions. However, the identification of non-invasive biomarkers for early diagnosis and patient risk stratification remains underexplored. Here, we conduct a targeted metabolomics analysis of 702 plasma samples from multi-center participants to elucidate the GC metabolic reprogramming. Our machine learning analysis reveals a 10-metabolite GC diagnostic model, which is validated in an external test set with a sensitivity of 0.905, outperforming conventional methods leveraging cancer protein markers (sensitivity < 0.40). Additionally, our machine learning-derived prognostic model demonstrates superior performance to traditional models utilizing clinical parameters and effectively stratifies patients into different risk groups to guide precision interventions. Collectively, our findings reveal the metabolic landscape of GC and identify two distinct biomarker panels that enable early detection and prognosis prediction respectively, thus facilitating precision medicine in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Metabolômica , Aprendizado de Máquina , Reprogramação Metabólica , Medicina de Precisão
20.
Opt Express ; 21(15): 18207-15, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23938691

RESUMO

Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n - λ /4n AR coating consisting of a TiO(2) layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.


Assuntos
Óxido de Alumínio/química , Arsenicais/química , Arsenicais/efeitos da radiação , Fontes de Energia Elétrica , Eletrodos , Gálio/química , Gálio/efeitos da radiação , Refratometria/instrumentação , Energia Solar , Adsorção , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA