Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biochem Biophys Res Commun ; 504(4): 933-940, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30224067

RESUMO

Alzheimer's disease (AD), which is the most common progressive neurodegenerative disease, causes learning and memory impairment. The pathological progress of AD can derive from imbalanced homeostasis of amyloid beta (Aß) in the brain. In such cases, microglia play important roles in regulating the brain Aß levels. In the present study, we found that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) can increase, through paracrine action, the ability of microglial cells to clear Aß. In order to identify the associated paracrine factors, a secretome of hUCB-MSCs co-cultured with Aß-treated BV2 microglial cells was analyzed using a human cytokine protein array. As a result, growth differentiation factor-15 (GDF-15) was identified as a predominant candidate, and its association with Aß clearance by microglial cells was investigated in vitro and in a 5XFAD mouse model. When Aß-treated BV2 cells were treated with exogenous recombinant GDF-15, the Aß levels in the culture medium decreased. Moreover, GDF-15 injection in the brain parenchyma of 5XFAD mice also led to decrease in Aß plaques. In contrast, co-culture of BV2 cells and hUCB-MSCs treated with GDF-15-specific siRNA did not influence the Aß levels in the culture medium. To elucidate how these phenomena are related, we confirmed that GDF-15 specifically increases insulin-degrading enzyme (IDE) expression in microglial cells through TGFß receptor type II (TGFßRII), both in vitro and in vivo. These findings suggest that hUCB-MSCs promote the Aß clearance ability of microglial cells through regulation of GDF-15 secretion, thus elucidating a therapeutic mechanism for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doença de Alzheimer/patologia , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Sangue Fetal/citologia , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Insulisina/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Mutantes , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Comunicação Parácrina , Fragmentos de Peptídeos/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
2.
Stem Cells ; 33(11): 3291-303, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235673

RESUMO

Previous studies have shown that mesenchymal stem cell (MSC)-based therapies have varying efficacies for the treatment of various diseases, including cartilage defects. In this study, we demonstrated that the chondrogenic differentiation potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) obtained from different individual donors varies, and we investigated the molecular basis for this variation. Microarray gene expression analysis identified thrombospondin-2 (TSP2) as a candidate gene underlying the interindividual variation in the chondrogenic differentiation potential of hUCB-MSCs. To assess the association between TSP-2 and the differentiation potential, we evaluated chondrogenic differentiation of hUCB-MSCs treated with TSP2 siRNA. In addition, we studied the effect of supplementing exogenous recombinant TSP-2 on TSP2 siRNA-treated hUCB-MSCs. We found that TSP-2 autocrinally promoted chondrogenic differentiation of hUCB-MSCs via the Notch signaling pathway, which was confirmed in MSCs from other sources such as bone marrow and adipose tissue. Interestingly, we observed that TSP-2 attenuated hypertrophy, which inevitably occurs during chondrogenic differentiation of hUCB-MSCs. Our findings indicated that the variable chondrogenic differentiation potential of MSCs obtained from different donors is influenced by the TSP-2 level in the differentiating cells. Thus, the TSP-2 level can be used as a marker to select MSCs with superior chondrogenic differentiation potential for use in cartilage regeneration therapy.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Sangue Fetal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Trombospondinas/metabolismo , Células Cultivadas , Humanos , Hipertrofia , Recém-Nascido
3.
J Neurosci Res ; 93(12): 1814-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26332684

RESUMO

Cell therapy is a potential therapeutic method for cerebral ischemia, which remains a serious problem. In the search for more effective therapeutic methods, many kinds of stem cells from various tissues have been developed and tested as candidate therapeutic agents. Among them, human umbilical cord blood (hUCB)-derived mesenchymal stem cells (MSCs) are widely used for cell therapy because of their genetic flexibility. To confirm that they are effective and understand how they affect ischemic neural cells, hUCB-MSCs were directly administered ipsilaterally into an ischemic zone induced by middle cerebral artery occlusion (MCAO). We found that the neurobehavioral performance of the hUCB-MSC group was significantly improved compared with that of the vehicle-injected control group. The infarct was also remarkably smaller in the hUCB-MSC group. Additionally, hUCB-MSC transplantation resulted in a greater number of newly generated cells and angiogenic and tissue repair factors and a lower number of inflammatory events in the penumbra zone. To determine why these events occurred, hUCB-MSCs were assayed under hypoxic and normoxic conditions in vitro. The results showed that hUCB-MSCs exhibit higher expression levels of thrombospondin1, pantraxin3, and vascular endothelial growth factor under hypoxic conditions than under normoxic conditions. These results were found to be correlated with our in vivo immunofluorescent staining results. On the basis of these findings, we suggest that hUCB-MSCs may have a beneficial effect on cerebral ischemia, especially through angiogenesis, neurogenesis, and anti-inflammatory effects, and thus could be used as a therapeutic agent to treat neurological disorders such as cerebral ischemia.


Assuntos
Proteína C-Reativa/metabolismo , Antígeno CD47/metabolismo , Infarto da Artéria Cerebral Média/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Recuperação de Função Fisiológica/fisiologia , Componente Amiloide P Sérico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Marcação In Situ das Extremidades Cortadas , Proteínas do Tecido Nervoso/metabolismo , Ratos , Fatores de Tempo
4.
J Korean Med Sci ; 30(5): 576-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931788

RESUMO

Pulmonary arterial hypertension (PAH) causes right ventricular failure due to a gradual increase in pulmonary vascular resistance. The purposes of this study were to confirm the engraftment of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) placed in the correct place in the lung and research on changes of hemodynamics, pulmonary pathology, immunomodulation and several gene expressions in monocrotaline (MCT)-induced PAH rat models after hUCB-MSCs transfusion. The rats were grouped as follows: the control (C) group; the M group (MCT 60 mg/kg); the U group (hUCB-MSCs transfusion). They received transfusions via the external jugular vein a week after MCT injection. The mean right ventricular pressure (RVP) was significantly reduced in the U group after the 2 week. The indicators of RV hypertrophy were significantly reduced in the U group at week 4. Reduced medial wall thickness in the pulmonary arteriole was noted in the U group at week 4. Reduced number of intra-acinar muscular pulmonary arteries was observed in the U group after 2 week. Protein expressions such as endothelin (ET)-1, endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 significantly decreased at week 4. The decreased levels of ERA, eNOS and MMP-2 immunoreactivity were noted by immnohistochemical staining. After hUCB-MSCs were administered, there were the improvement of RVH and mean RVP. Reductions in several protein expressions and immunomodulation were also detected. It is suggested that hUCB-MSCs may be a promising therapeutic option for PAH.


Assuntos
Sangue Fetal/citologia , Hipertensão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Endotelina-1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemodinâmica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Imuno-Histoquímica , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Monocrotalina/toxicidade , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/metabolismo
5.
Biochem Biophys Res Commun ; 446(4): 983-9, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24657442

RESUMO

Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore "immunologically safe" for use in allogeneic clinical applications.


Assuntos
Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Animais , Antígenos CD34/análise , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Ativação Linfocitária , Camundongos , Camundongos SCID , Fator de Necrose Tumoral alfa/imunologia
6.
Stem Cells ; 31(10): 2136-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23843355

RESUMO

Increasing evidence indicates that the secretome of mesenchymal stem cells (MSCs) has therapeutic potential for the treatment of various diseases, including cartilage disorders. However, the paracrine mechanisms underlying cartilage repair by MSCs are poorly understood. Here, we show that human umbilical cord blood-derived MSCs (hUCB-MSCs) promoted differentiation of chondroprogenitor cells by paracrine action. This paracrine effect of hUCB-MSCs on chondroprogenitor cells was increased by treatment with synovial fluid (SF) obtained from osteoarthritis (OA) patients but was decreased by SF of fracture patients, compared to that of an untreated group. To identify paracrine factors underlying the chondrogenic effect of hUCB-MSCs, the secretomes of hUCB-MSCs stimulated by OA SF or fracture SF were analyzed using a biotin label-based antibody array. Among the proteins increased in response to these two kinds of SF, thrombospondin-2 (TSP-2) was specifically increased in only OA SF-treated hUCB-MSCs. In order to determine the role of TSP-2, exogenous TSP-2 was added to a micromass culture of chondroprogenitor cells. We found that TSP-2 had chondrogenic effects on chondroprogenitor cells via PKCα, ERK, p38/MAPK, and Notch signaling pathways. Knockdown of TSP-2 expression on hUCB-MSCs using small interfering RNA abolished the chondrogenic effects of hUCB-MSCs on chondroprogenitor cells. In parallel with in vitro analysis, the cartilage regenerating effect of hUCB-MSCs and TSP-2 was also demonstrated using a rabbit full-thickness osteochondral-defect model. Our findings suggested that hUCB-MSCs can stimulate the differentiation of locally presented endogenous chondroprogenitor cells by TSP-2, which finally leads to cartilage regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Trombospondinas/metabolismo , Adulto , Idoso , Animais , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Coelhos , Regeneração , Medicina Regenerativa , Líquido Sinovial/fisiologia , Trombospondinas/fisiologia , Trombospondinas/uso terapêutico
7.
Cytotherapy ; 16(3): 298-308, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24418403

RESUMO

BACKGROUND AIMS: Although in vitro studies have demonstrated the immunosuppressive capacity of mesenchymal stromal cells (MSCs), most in vivo studies on graft-versus-host disease (GVHD) have focused on prevention, and the therapeutic effect of MSCs is controversial. Moreover, optimal time intervals for infusing MSCs have not been established. METHODS: We attempted to evaluate whether human umbilical cord blood-MSCs (hUCB-MSCs) could either prevent or treat GVHD in an NSG mouse xenograft model by injection of MSCs before or after in vivo clearance. Mice were infused with either a single dose or multiple doses of 5 × 10(5) hUCB-MSCs (3- or 7-day intervals) before or after GVHD onset. RESULTS: Before onset, hUCB-MSCs significantly improved the survival rate only when repeatedly injected at 3-day intervals. In contrast, single or repeated injections after GVHD onset significantly increased the survival rate and effectively attenuated tissue damage and inflammation. Furthermore, the levels of prostaglandin E2 and transforming growth factor-ß1 increased significantly, whereas the level of interferon-γ decreased significantly in all MSC treatment groups. CONCLUSIONS: These data establish the optimal time intervals for preventing GVHD and show that hUCB-MSCs effectively attenuated symptoms and improved survival rate when administered after the onset of GVDH.


Assuntos
Sangue Fetal/citologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Células Cultivadas , Dinoprostona/metabolismo , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos , Melhoria de Qualidade , Fator de Crescimento Transformador beta1/metabolismo , Transplante Heterólogo
8.
Anal Chem ; 85(12): 5892-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23581968

RESUMO

High-throughput growth phenotyping is receiving great attention for establishing the genotype-phenotype map of sequenced organisms owing to the ready availability of complete genome sequences. To date, microbial growth phenotypes have been investigated mostly by the conventional method of batch cultivation using test tubes, Erlenmeyer flasks, or the recently available microwell plates. However, the current batch cultivation methods are time- and labor-intensive and often fail to consider sophisticated environmental changes. The implementation of batch cultures at the nanoliter scale has been difficult because of the quick evaporation of the culture medium inside the reactors. Here, we report a microfluidic system that allows independent cell cultures in evaporation-free multiplex nanoliter reactors under different culture conditions to assess the behavior of cells. The design allows three experimental replicates for each of eight culture environments in a single run. We demonstrate the versatility of the device by performing growth curve experiments with Escherichia coli and microbiological assays of antibiotics against the opportunistic pathogen Pseudomonas aeruginosa. Our study highlights that the microfluidic system can effectively replace the traditional batch culture methods with nanoliter volumes of bacterial cultivations, and it may be therefore promising for high-throughput growth phenotyping as well as for single-cell analyses.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Escherichia coli/fisiologia , Nanotecnologia/métodos , Fenótipo , Pseudomonas aeruginosa/fisiologia
9.
Ann Hematol ; 92(12): 1595-602, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23835655

RESUMO

To overcome the limitations of allogeneic hematopoietic stem cell transplantation (HSCT), we conducted a study to identify a strategy for enhancing hematopoietic stem cell (HSC) engraftment during HSCT. Co-transplantation experiments with mesenchymal stem cells (MSCs) derived from adult human tissues including bone marrow (BM), adipose tissue (AT), and umbilical cord blood (CB) were conducted. We showed that AT-MSCs and CB-MSCs enhanced the engraftment of HSCs as effectively as BM-MSCs in NOD/SCID mice, suggesting that AT-MSCs and CB-MSCs can be used as alternative stem cell sources for enhancing the engraftment and homing of HSCs. CB-MSCs derived from different donors showed different degrees of efficacy in enhancing the engraftment of HSCs. The most effective CB-MSCs showed higher proliferation rates and secreted more MCP-1, RANTES, EGF, and VEGF. Our results suggest that AT-MSCs and CB-MSCs could be alternative stem cell sources for co-transplantation in HSCT. Furthermore, in terms of MSCs' heterogeneity, characteristics of each population of MSCs are considerable factors for selecting MSCs suitable for co-transplantation with HSC.


Assuntos
Sobrevivência de Enxerto/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Tecido Adiposo/transplante , Animais , Células da Medula Óssea/fisiologia , Proliferação de Células , Células Cultivadas , Sangue Fetal/fisiologia , Sangue Fetal/transplante , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
Int J Mol Sci ; 14(9): 17986-8001, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24005862

RESUMO

Various source-derived mesenchymal stem cells (MSCs) have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM), adipose tissue (AT), and umbilical cord blood-derived MSCs (UCB-MSCs) for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS)-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α), IL-6, and IL-8 via angiopoietin-1 (Ang-1). Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA), we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Angiopoietina-1/metabolismo , Western Blotting , Criança , Humanos , Imunofenotipagem , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Adulto Jovem
11.
J Transl Med ; 10: 58, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22443810

RESUMO

BACKGROUNDS: We conducted a pilot study of the infusion of intravenous autologous cord blood (CB) in children with cerebral palsy (CP) to assess the safety and feasibility of the procedure as well as its potential efficacy in countering neurological impairment. METHODS: Patients diagnosed with CP were enrolled in this study if their parents had elected to bank their CB at birth. Cryopreserved CB units were thawed and infused intravenously over 10~20 minutes. We assessed potential efficacy over 6 months by brain magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI), brain perfusion single-photon emission computed tomography (SPECT), and various evaluation tools for motor and cognitive functions. RESULTS: Twenty patients received autologous CB infusion and were evaluated. The types of CP were as follows: 11 quadriplegics, 6 hemiplegics, and 3 diplegics. Infusion was generally well-tolerated, although 5 patients experienced temporary nausea, hemoglobinuria, or urticaria during intravenous infusion. Diverse neurological domains improved in 5 patients (25%) as assessed with developmental evaluation tools as well as by fractional anisotropy values in brain MRI-DTI. The neurologic improvement occurred significantly in patients with diplegia or hemiplegia rather than quadriplegia. CONCLUSIONS: Autologous CB infusion is safe and feasible, and has yielded potential benefits in children with CP.


Assuntos
Transfusão de Sangue/métodos , Paralisia Cerebral/terapia , Transtornos Cognitivos/prevenção & controle , Sangue Fetal/transplante , Transtornos Psicomotores/prevenção & controle , Encéfalo/diagnóstico por imagem , Paralisia Cerebral/complicações , Paralisia Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Imagem de Tensor de Difusão , Estudos de Viabilidade , Feminino , Humanos , Infusões Intravenosas , Imageamento por Ressonância Magnética , Masculino , Exame Neurológico , Projetos Piloto , Transtornos Psicomotores/diagnóstico por imagem , Transtornos Psicomotores/etiologia , Radiografia , Reação Transfusional , Transplante Autólogo/efeitos adversos
12.
Biochem Biophys Res Commun ; 407(4): 741-6, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21439934

RESUMO

In this study, we showed that knocking-down interleukin-8 (IL-8) in glioma cells, or its receptor, CXC chemokine receptor 1 (CXCR1) in hUCB-MSCs reduced hUCB-MSC migration toward glioma cells in a Transwell chamber. In contrast, CXCR1-transfected hUCB-MSCs (CXCR1-MSCs) showed a superior capacity to migrate toward glioma cells in a Transwell chamber compared to primary hUCB-MSCs. Furthermore, these transfected cells also demonstrated the same ability to migrate toward tumors in mice bearing intracranial human gliomas as shown by histological and in vivo imaging analysis. Our findings indicate that overexpression of CXCR1 could be a useful tool for MSC-based gene therapy to achieve a sufficient quantity of therapeutic MSCs that are localized within tumors.


Assuntos
Neoplasias Encefálicas/terapia , Movimento Celular , Terapia Genética/métodos , Glioma/terapia , Células-Tronco Mesenquimais/fisiologia , Receptores de Interleucina-8A/genética , Animais , Linhagem Celular Tumoral , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Humanos , Interleucina-8/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Mol Life Sci ; 67(11): 1845-58, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20165901

RESUMO

GD2 ganglioside has been identified as a key determinant of bone marrow-derived mesenchymal stem cells (BM-MSCs). Here, we characterized GD2 ganglioside expression and its implications in umbilical cord blood-derived MSCs (UCB-MSCs). Using immune-selection analysis, we showed that both GD2-positive and GD2-negative UCB-MSCs expressed general stem cell markers and possessed mesodermal lineage differentiation potential. Although the fraction of GD2-expressing cells was lower in UCB-MSC than in BM-MSC populations, inhibition of GD2 synthesis in UCB-MSCs suppressed neuronal differentiation and down-regulated basic helix-loop-helix (bHLH) transcription factors, which are involved in early stage neuronal differentiation. In addition, the levels of bHLH factors in neuronally induced UCB-MSCs were significantly higher in GD2-positive than GD2-negative cells. Our data demonstrate that GD2 ganglioside expression is associated with regulation of bHLH factors and identify neurogenic-capable UCB-MSCs, providing new insights into the potential clinical applications of MSC-based therapy.


Assuntos
Sangue Fetal/citologia , Sangue Fetal/metabolismo , Gangliosídeos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Primers do DNA/genética , Humanos , Recém-Nascido , Transplante de Células-Tronco Mesenquimais , N-Acetilgalactosaminiltransferases/antagonistas & inibidores , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Neurogênese , RNA Interferente Pequeno/genética
14.
Pediatr Hematol Oncol ; 28(8): 682-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023463

RESUMO

Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) enhance the engraftment of human hematopoietic stem cells (HSCs) when they are cotransplanted in animal and human studies. However, the type of MSCs that preferentially facilitate the engraftment and homing of HSCs is largely unknown. The authors categorized UCB-MSCs as the least-effective MSCs (A) or most-effective MSCs (B) at enhancing the engraftment of HSCs, and compared the gene expression profiles of various cytokines and growth factors in the UCB-MSC populations. The most-effective UCB-MSCs (B) secreted higher levels of several factors, including chemokine (C-X-C motif) ligand 12 (CXCL12), regulated upon activation, normal T cells expressed and secreted (RANTES), epithelial growth factor (EGF), and stem cell factor (SCF), which are required for the engraftment and homing of HSCs. By contrast, levels of growth-related oncogene (GRO), insulin-like growth factor-binding protein 1 (IGFBP1), and interleukin-8 (IL-8), which are associated with immune inflammation, were secreted at higher levels in UCB-MSCs (A). In addition, there were no differences between the transcripts of the 2 UCB-MSC populations after interferon-gamma (IFN-γ) stimulation, except for cyclooxygenase (COX)-1. Based on these findings, the authors propose that these chemokines may be useful for modulating these cells in a clinical setting and potentially for enhancing the effectiveness of the engraftment and homing of HSCs.


Assuntos
Quimiocinas/metabolismo , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Células Cultivadas , Quimiocinas/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Tohoku J Exp Med ; 221(2): 141-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20495303

RESUMO

Mesenchymal stem cells (MSCs) can potentially differentiate along multiple lineages and be expanded in vitro, making them highly attractive candidates for cell therapy and tissue engineering applications. This study sought to investigate the critical proteins involved in osteogenic differentiation of mesenchymal stem cells derived from umbilical cord blood (UCB-MSCs). MSCs, which were isolated from three different preparations of human UCB, were osteoinduced, and total proteins were extracted from the cells. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was performed on the day (d) of induction d0, and on d2, d7, and d21 of differentiation. The optical density (OD) of each spot was measured, and spots with a mean OD of three cell lines of MSCs that increased > 30 or decreased < 0.1 relative to a previous time point were selected. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) was used to identify the proteins. Through database searches, the properties and functions of the proteins were investigated and then classified according to the Gene Ontology classification. Among the 308 spots observed in the 2-D gel, 16 proteins with a mean OD ratio > 30, and 20 proteins with a mean OD ratio < 0.1 were identified during the differentiation process. Additionally, the distribution of differentially expressed proteins according to cellular component and molecular function criteria differed depending on whether protein expression increased or decreased during differentiation. The results of this study will comprise an initial proteomic database for UCB-MSCs differentiation.


Assuntos
Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Proteínas/metabolismo , Diferenciação Celular , Células Cultivadas , Eletroforese em Gel Bidimensional/métodos , Sangue Fetal/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos
16.
Biochem Biophys Res Commun ; 381(4): 676-81, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19250924

RESUMO

Umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) have multi-lineage differentiation potential, thus highlighting the feasibility of using UCB-MSCs as a valuable source of stem-cells for cell-based therapy. However, there are no well-defined markers for assessment of the multi-potency of UCB-MSCs. Thus, we focused on the identification of suitable markers by examining cell surface protein expressions of UCB-MSCs as their multi-lineage differentiations progressed. The expression of CD105, one of the cell surface proteins, was significantly decreased in differentiated osteoblasts, chondrocytes, adipocytes, and respiratory epithelium, and the portion of CD105-positive cells from 99.4+/-0.1% to 3.5+/-1.4%, 3.5+/-2.3%, 16.7+/-3.6%, and 2.1+/-1.5%, respectively. As to such indicators as alkaline phosphatase (ALP), glycosaminoglycan (GAG), oil Red O, and surfactant protein C (SPC), they showed increases, confirming differentiation of UCB-MSCs into osteoblasts, chondrocytes, adipocytes, and respiratory epithelium. This is the first study to demonstrate a negative correlation between expression of CD105 over the time course of multi-lineage differentiation and the degree of differentiation of UCB-MSCs. We propose that CD105 is a useful novel marker to characterize differentiation status of isolated human UCB-MSCs, which will be useful to facilitate the application of such cells in stem-cell therapy.


Assuntos
Antígenos CD/metabolismo , Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Receptores de Superfície Celular/metabolismo , Cordão Umbilical/citologia , Biomarcadores/metabolismo , Separação Celular , Regulação para Baixo , Endoglina , Humanos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
17.
Stem Cells ; 26(7): 1901-12, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18403756

RESUMO

Stem cell transplantation in acute myocardial infarction (AMI) has emerged as a promising therapeutic option. We evaluated the impact of AMI on mesenchymal stem cell (MSC) differentiation into cardiomyocyte lineage. Cord blood-derived human MSCs were exposed to in vitro conditions simulating in vivo environments of the beating heart with acute ischemia, as follows: (a) myocardial proteins or serum obtained from sham-operated rats, and (b) myocardial proteins or serum from AMI rats, with or without application of oscillating pressure. Expression of cardiac-specific markers on MSCs was greatly induced by the infarcted myocardial proteins, compared with the normal proteins. It was also induced by application of oscillating pressure to MSCs. Treatment of MSCs with infarcted myocardial proteins and oscillating pressure greatly augmented expression of cardiac-specific genes. Such expression was blocked by inhibitor of transforming growth factor beta(1) (TGF-beta(1)) or bone morphogenetic protein-2 (BMP-2). In vitro cellular and electrophysiologic experiments showed that these differentiated MSCs expressing cardiomyocyte-specific markers were able to make a coupling with cardiomyocytes but not to selfbeat. The pathophysiologic significance of in vitro results was confirmed using the rat AMI model. The protein amount of TGF-beta(1) and BMP-2 in myocardium of AMI was significantly higher than that in normal myocardium. When MSCs were transplanted to the heart and analyzed 8 weeks later, they expressed cardiomyocyte-specific markers, leading to improved cardiac function. These in vitro and in vivo results suggest that infarct-related biological and physical factors in AMI induce commitment of MSCs to cardiomyocyte-like cells through TGF-beta/BMP-2 pathways.


Assuntos
Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/citologia , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Junções Comunicantes/metabolismo , Humanos , Oscilometria , Fenótipo , Ratos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Veias Umbilicais/metabolismo
18.
Cell Immunol ; 251(2): 116-23, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18495100

RESUMO

Mesenchymal stromal cells (MSCs) are promising candidates for developing cell therapies for intractable diseases. To assess the feasibility of transplantation with human umbilical cord blood (hUCB)-derived MSCs, we analyzed the ability of these cells to function as alloantigen-presenting cells (APC) in vitro. hUCB-MSCs were strongly positive for MSC-related antigens and stained positively for human leukocyte antigen (HLA)-AB and negatively for HLA-DR. When treated with interferon (IFN)-gamma, the expression of HLA-AB and HLA-DR, but not the co-stimulatory molecules CD80 and CD86, was increased. hUCB-MSCs did not provoke allogeneic PBMC (peripheral blood mononuclear cell) proliferation, even when their HLA-molecule expression was up-regulated by IFN-gamma pretreatment. When added to a mixed lymphocyte reaction (MLR), hUCB-MSCs actively suppressed the allogeneic proliferation of the responder lymphocytes. This suppressive effect was mediated by soluble factors. We conclude that hUCB-MSCs can suppress the allogeneic response of lymphocytes and may thus be useful in allogeneic cell therapies.


Assuntos
Sangue Fetal/imunologia , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular/imunologia , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Sangue Fetal/citologia , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Imunofenotipagem , Recém-Nascido , Interferon gama/farmacologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Mesoderma , Gravidez , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia
19.
Can J Surg ; 51(4): 269-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18815649

RESUMO

BACKGROUND: Clinical studies have demonstrated that intracoronary or intramyocardial transplantation of bone marrow mononuclear cells (BMMNCs) into ischemic myocardium improves cardiac function. The objective of the present study was to evaluate the safety and feasibility of intramyocardial BMMNC transplantation into nongraftable areas in combination with off-pump coronary artery bypass grafting in patients with ischemic cardiomyopathy. METHODS: Five male patients with myocardial infarction lasting for more than 1 month and with nongraftable myocardium received autologous mononuclear cell transplantation during off-pump coronary artery bypass grafting. Autologous bone marrow was aspirated from the iliac crest. BMMNCs (mean 1.6, standard error [SE] 0.3 x 10(9)) including CD34-positive cells (mean 6.8, SE 1.1 x 10(6)) and AC133-positive cells (mean 3.1, SE 1.7 x 10(6)) were injected into the nongraftable ischemic myocardium. Heart function was evaluated with the use of echocardiography, and myocardial perfusion was examined with single photon emission computed tomography technetium-99mTc sestamibi scans. RESULTS: Two months after cell transplantation, the mean ejection fraction had increased by 7.4%, SE 1.9% (p = 0.016) compared with that before cell transplantation and off-pump coronary artery bypass grafting. The increase in ejection fraction was not correlated with the number of transplanted total mononuclear cells, CD34-positive cells and AC133-positive cells. Myocardial perfusion at the cell-transplanted area increased after cell transplantation and off-pump coronary artery bypass grafting. No arrhythmia was observed. CONCLUSION: The present clinical study suggests that intramyocardial transplantation of autologous BMMNCs into the ischemic area during off-pump coronary artery bypass grafting is both feasible and safe and has beneficial effects on cardiac function.


Assuntos
Angina Instável/cirurgia , Transplante de Medula Óssea/métodos , Ponte de Artéria Coronária sem Circulação Extracorpórea/métodos , Idoso , Angina Instável/diagnóstico , Angiografia Coronária , Eletrocardiografia , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único , Transplante Autólogo , Resultado do Tratamento
20.
Stem Cells Int ; 2018: 4978763, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254683

RESUMO

Human mesenchymal stem cells (hMSCs), including human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), which have high proliferation capacity and immunomodulatory properties, are considered to be a good candidate for cell-based therapies. hMSCs show enhanced therapeutic effects via paracrine secretion or cell-to-cell contact that modulates inflammatory or immune reactions. Here, treatment with cobalt chloride (CoCl2) was more effective than naïve hUCB-MSCs in suppressing inflammatory responses in a coculture system with phytohemagglutinin- (PHA-) activated human peripheral blood mononuclear cells (hPBMCs). Furthermore, the effect of CoCl2 is exerted by promoting the expression of anti-inflammatory mediators (e.g., PGE2) and inhibiting that of inflammatory cytokines (e.g., TNF-α and IFN-γ). Treatment of hUCB-MSCs with CoCl2 leads to increased expression of microRNA- (miR-) 146a, which was reported to modulate anti-inflammatory responses. Hypoxia-inducible factor- (HIF-) 1α silencing and ERK inhibition abolished CoCl2-induced miR-146a expression, suggesting that ERK and HIF-1α signals are required for CoCl2-induced miR-146a expression in hUCB-MSCs. These data suggest that treatment with CoCl2 enhances the immunosuppressive capacity of hUCB-MSCs through the ERK-HIF-1α-miR-146a-mediated signaling pathway. Furthermore, pretreatment of transplanted MSCs with CoCl2 can suppress lung inflammation more than naïve MSCs can in a mouse model of asthma. These findings suggest that CoCl2 may improve the therapeutic effects of hUCB-MSCs for the treatment of inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA