Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Rep ; 41(7): 977-989, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38284321

RESUMO

Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.


Assuntos
Bactérias , Poli-Inos , Bactérias/metabolismo , Poli-Inos/química , Poli-Inos/metabolismo , Poli-Inos/farmacologia , Estrutura Molecular , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Vias Biossintéticas , Biotecnologia/métodos
2.
Arch Insect Biochem Physiol ; 116(4): e22099, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137216

RESUMO

Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.


Assuntos
Dimetil Sulfóxido , Nosema , Animais , Nosema/efeitos dos fármacos , Nosema/fisiologia , Abelhas/microbiologia , Dimetil Sulfóxido/farmacologia , Microsporidiose/veterinária
4.
Sci Rep ; 14(1): 11584, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773245

RESUMO

Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 µg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Penaeidae/microbiologia , Penaeidae/crescimento & desenvolvimento , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/patogenicidade , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrioses/microbiologia , Lactobacillus/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Vibrio/efeitos dos fármacos , Vibrio/patogenicidade , Probióticos
5.
Mar Biotechnol (NY) ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066983

RESUMO

Naturally occurring 6-pentyl-2H-pyran-2-one and its synthetic analogues greatly inhibit the settlement of Amphibalanus amphitrite cyprids and the growth and biofilm formation of marine bacteria. To optimize the antifouling activities of pyrone derivatives, this study designed pyrone analogues by modifying functional groups, such as the benzyl group, cyclopentane, and halides, substituted on both sides of a pyrone. The antifouling effects of the synthesized pyrone derivatives were subsequently evaluated against five marine biofilm-forming bacteria, Loktanella hongkongensis, Staphylococcus cohnii, S. saprophyticus, Photobacterium angustum, and Alteromonas macleodii, along with barnacle cyprids of Amphibalanus amphitrite. Substituting nonpolar parts-such as the aliphatic, cyclopentyl, or phenyl moieties on C-5 or the furan moieties on C-3-not only increased antibacterial activity and inhibited biofilm formation but also inhibited barnacle cyprid settlement when compared to 6-pentyl-2H-pyran-2-one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA