Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917542

RESUMO

Groundwater heat pump (GWHP) systems are increasingly popular as low-carbon and environmentally friendly technologies, but well clogging induced by iron remains a significant issue. This study investigated the clogging characteristics and biogeochemistry of three typical wells (pumping, injection, and observation wells) in an operating GWHP system using video imaging, sampling, and analysis of hydrogeochemical and microbial data. The results revealed that iron-induced well clogging is a complex process involving physical, chemical, and microbial factors. Pumping wells experience clogging due to water mixing with varying redox conditions, resulting in hematite-based iron oxide deposits. Injection wells exhibit higher clogging severity, with transformed oxidation and accumulation of reduced iron minerals at the solid-liquid interface, resulting in darker colored clogs with magnetite. Clogging in both extraction and injection wells is closely related to iron-rich aquifer sections, where severe clogging occurs. Shallow clogging due to iron oxide is limited and attributed to the oxidation of zero-valent iron in well casing material. Iron-oxidizing bacteria and iron-reducing bacteria were detected in the consolidated deposits of clogged wells, indicating their involvement in the clogging formation process. Moreover, a strong correlation was observed between the presence of nitrate-reducing bacteria in the water phase and the severity of clogging, suggesting a possible link between iron oxidation and nitrate reduction in the system. Geochemical modeling results further supported the observed clogging severity in GWHP systems and confirmed varying clogging mechanisms in different wells and depths. These findings contribute to the understanding of clogging in GWHP operations, aiding in robust water utilization and energy-saving efforts, and supporting global carbon reduction initiatives.


Assuntos
Água Subterrânea , Ferro , Água Subterrânea/química , Ferro/química , Ferro/análise , Compostos Férricos/química , Oxirredução
2.
J Hazard Mater ; 469: 134031, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518701

RESUMO

Sulfidated nano-scale zerovalent iron (S-nZVI) has emerged as an advanced functional nanomaterial for efficiently remediating Cr(VI) contamination in aqueous environments. However, there is an insufficient understanding of its coherent process, removal pathway, and hydrochemical reactive mechanisms, presenting potential challenges for its future environmental applications. To address this gap, this study successfully synthesized S-nZVI through a chemical precipitation method and effectively applied it for the removal of Cr(VI). Additional characterization revealed that the removal of Cr(VI) followed a sequence of rapid chemisorption and intraparticle diffusion processes, concomitant with an increase in pH and a decrease in oxidation-reduction potential. The remediation mechanism encompassed a synergistic reduction of Cr(VI) to Cr(III) and simultaneous immobilization via Cr2FeO4 coprecipitation. The highest Cr(VI) removal capacity of 75 mg/g was attained during dynamic removal experiments in the sand column packed with S-nZVI. Further computational analysis, employing density functional theory calculations based on the experimental data, revealed the involvement of multiple molecular orbitals of Cr(VI) in the removal process. It also elucidated a step-by-step reduction pathway for Cr(VI) characterized by decreasing free energy. These findings provide evidence-based insights into Cr(VI) remediation using S-nZVI and can serve as valuable technical support for future environmental management of heavy metals.

3.
Water Res ; 256: 121625, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640565

RESUMO

Hexavalent chromium (Cr(VI)) contamination in groundwater poses a substantial global challenge due to its high toxicity and extensive industrial applications. While the bioelectroremediation of Cr(VI) has attracted huge attention for its eco-friendly attributes, its practical application remains constrained by the hydrogeochemical conditions of groundwater (mainly pH), low electron transfer efficiency, limitations in electrocatalyst synthesis and electrode fabrication. In this study, we developed and investigated the use of N, S co-doped carbon nanofibers (CNFs) integrated on a graphite felt (GF) as a self-standing cathode (NS/CNF-GF) for the comprehensive reduction of Cr(VI) from real contaminated groundwater. The binder free cathode, prepared through electro-polymerization, was employed in a dual-chamber microbial fuel cell (MFC) for the treatment of Cr (VI)-laden real groundwater (40 mg/L) with a pH of 7.4. The electrochemical characterization of the prepared cathode revealed a distinct electroactive surface area, more wettability, facilitating enhanced adsorption and rapid electron transfer, resulting in a commendable Cr(VI) reduction rate of 0.83 mg/L/h. The MFC equipped with NS/CNF-GF demonstrated the lowest charge transfer resistance (Rct) and generated the highest power density (155 ± 0.3 mW/m2) compared to control systems. The favorable electrokinetics for modified cathode led to swift substrate consumption in the anode, releasing more electrons and protons, thereby accelerating Cr(VI) reduction to achieve the highest cathodic coulombic efficiency (C.Eca)of80 ± 1.3 %. A similar temporal trend observed between Cr(VI) removal efficiency, COD removal efficiency, and C.Eca, underscores the effective performance of the modified electrode. The reusability of the binder free cathode, exemption from catholyte preparation and the absence of pH regulation requirements highlighted the potential scalability and applicability of our findings on a larger scale.


Assuntos
Cromo , Eletrodos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/química , Cromo/química , Biodegradação Ambiental , Metais Pesados/química , Fontes de Energia Bioelétrica , Concentração de Íons de Hidrogênio
4.
Environ Pollut ; 343: 123197, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128710

RESUMO

The diversity of colloidal types and the differences in the composite ratios in porous media are important factors governing the migration and biological risk of pathogenic microorganisms in the subsurface environment. In this study, E. coli O157:H7 was subjected to co-migration experiments with different compositions of the composite colloid montmorillonite (MMT)-Fe2O3, and the biomolecular response of E. coli under the action of colloids was analyzed by Raman spectroscopy to quantify the risk of E. coli under the action of composite colloids based on both. The results showed that Fe2O3 colloids inhibited E. coli migration mainly by electrostatic adsorption and reduced E. coli metabolism. MMT colloid inhibited E. coli migration mainly by blockage, and E. coli metabolism increased, and surface macromolecules decreased to reduce E. coli adhesion. MMT-Fe2O3 complex colloids inhibited migration through electrostatic attraction between the two and formation of cohesive colloids, with reduced E. coli metabolism and insignificant biomolecular response. It was briefly assessed that the composite colloids reduced E. coli risk less strongly than single colloids, stemming from the difference in the mechanism of influence and the actual need to consider colloid interactions. This conclusion can inform the management and control of pathogen risk in porous media environments.


Assuntos
Bentonita , Escherichia coli , Porosidade , Bentonita/química , Coloides/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA