Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(19): 11109-18, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25184953

RESUMO

Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1° x 1°. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 ± 0.10 µg m(-3) yr(-1)), the Arabian Peninsula (0.81 ± 0.21 µg m(-3) yr(-1)), South Asia (0.93 ± 0.22 µg m(-3) yr(-1)) and East Asia (0.79 ± 0.27 µg m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 ± 0.13 µg m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 ± 0.06 µg m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.


Assuntos
Aerossóis/análise , Material Particulado/análise , Ásia , Poeira , Monitoramento Ambiental , Ásia Oriental , Modelos Químicos , Imagens de Satélites , Estados Unidos
2.
Geophys Res Lett ; 39(1)2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758438

RESUMO

Acetone is one of the most abundant carbonyl compounds in the atmosphere and it plays an important role in atmospheric chemistry. The role of the ocean in the global atmospheric acetone budget is highly uncertain, with past studies reaching opposite conclusions as to whether the ocean is a source or sink. Here we use a global 3-D chemical transport model (GEOS-Chem) simulation of atmospheric acetone to evaluate the role of air-sea exchange in the global budget. Inclusion of updated (slower) photolysis loss in the model means that a large net ocean source is not needed to explain observed acetone in marine air. We find that a simulation with a fixed seawater acetone concentration of 15 nM based on observations can reproduce the observed global patterns of atmospheric concentrations and air-sea fluxes. The Northern Hemisphere oceans are a net sink for acetone while the tropical oceans are a net source. On a global scale the ocean is in near-equilibrium with the atmosphere. Prescribing an ocean concentration of acetone as a boundary condition in the model assumes that ocean concentrations are controlled by internal production and loss, rather than by air-sea exchange. An implication is that the ocean plays a major role in controlling atmospheric acetone. This hypothesis needs to be tested by better quantification of oceanic acetone sources and sinks.

3.
Atmos Chem Phys ; 16(9): 5969-5991, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29681921

RESUMO

Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ∼25 × 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO2 in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20% by photolysis to recycle NOx and 15% by dry deposition. RONO2 production accounts for 20% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.

4.
Atmos Chem Phys ; 14(5): 2679-2698, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33758588

RESUMO

Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30 %), acetone (7 %), and a suite of other isoprene and terpene oxidation products (19 %). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37 %) and alkanes (14 %). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA