Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nanomedicine ; 16: 10-19, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502420

RESUMO

The advent of personalized medicine has brought an increased interest in personal health among general consumers. As a result, there is a great need for user-centric point-of-care (POC) health devices. Such devices are equally pertinent in developing countries or resource-limited settings for performing diagnostic tests. However, current POC tests for diseases such as human immunodeficiency virus (HIV) or leukocytosis do not provide adequate levels of sensitivity or do not exist at all. Here, we extend our mobile magneto-nanosensor platform to point-of-care HIV and leukocytosis detection. The platform can be multiplexed, and the circuitry enables portability and sensitivity in the POC setting. A smartphone application simplifies operation and provides guidance to facilitate self-testing. Commercially available POC test kits typically provide only qualitative or semi-quantitative results of a single analyte. The magneto-nanosensor platform can provide users with pleasant user-experience while demonstrating robust sensitive and specific multiplexed quantification and detection of common diseases.


Assuntos
Técnicas Biossensoriais/métodos , Infecções por HIV/diagnóstico , Leucocitose/diagnóstico , Nanopartículas , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Humanos , Imunoensaio
2.
Sensors (Basel) ; 17(6)2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556804

RESUMO

Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs.


Assuntos
Smartphone , Fibrose Cística , Eletrodos , Humanos , Pulmão
3.
Sens Actuators B Chem ; 235: 126-135, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27725788

RESUMO

Cellular phone penetration has grown continually over the past two decades with the number of connected devices rapidly approaching the total world population. Leveraging the worldwide ubiquity and connectivity of these devices, we developed a mobile phone-based electrochemical biosensor platform for point-of-care (POC) diagnostics and wellness tracking. The platform consists of an inexpensive electronic module (< $20) containing a low-power potentiostat that interfaces with and efficiently harvests power from a wide variety of phones through the audio jack. Active impedance matching improves the harvesting efficiency to 79%. Excluding loses from supply rectification and regulation, the module consumes 6.9 mW peak power and can measure < 1 nA bidirectional current. The prototype was shown to operate within the available power budget set by mobile devices and produce data that matches well with that of an expensive laboratory grade instrument. We demonstrate that the platform can be used to track the concentration of secretory leukocyte protease inhibitor (SLPI), a biomarker for monitoring lung infections in cystic fibrosis patients, in its physiological range via an electrochemical sandwich assay on disposable screen-printed electrodes with a 1 nM limit of detection.

4.
Biosens Bioelectron ; 202: 113982, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033828

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Most patients, however, are not diagnosed until advanced stage because early HCC lesions generally cause no overt symptoms, and the presence of cirrhosis adds another layer of complexity. While early diagnosis enables more therapeutic options and greatly improves survival rates, it is difficult to achieve. In order to detect early stage HCC, high-risk patients need to frequently measure serum biomarkers such as alpha-fetoprotein (AFP), and gold standards for detection involve less accessible and costly tests. In this work, we present an automated and mobile magnetoresistive biosensor system that allows quick, easy, and accurate detection of a panel of HCC related biomarkers. We first discuss the underlying principles of the giant magnetoresistive (GMR) biosensor system and its unique advantages in early detection of HCC. We also describe the development of hardware, software, and the bioassay, and demonstrate that it can perform an automated assay in 28 min, providing both qualitative and quantitative results. The user only needs to manually add sample into a disposable cartridge and press a button on the smartphone app, without the need for direct interaction with reagent liquids, or lab skills such as pipetting. With its portability, high sensitivity, and ease-of-use, the presented biosensor system has the potential to empower both medical practitioners and patients to achieve early HCC diagnosis. Furthermore, the GMR biosensor platform can be adapted to detect other protein or DNA biomarkers beyond HCC, bringing the goals of accessible mobile health even closer to reality.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas/metabolismo
5.
Biosens Bioelectron ; 210: 114305, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35523005

RESUMO

Circulating tumor cell (CTC) detection as a burgeoning detection strategy can identify the tumor lesion in the early stage, and facilitates the understanding of tumorigenesis, tumor progression, metastasis, and drug-resistance. Herein, we present a novel strategy for in situ isolating and directly detecting CTCs from peripheral blood at single-cell resolution using black TiO2 (B-TiO2)-based Surface-Enhanced Raman Scattering (SERS) bio-probe on a microfilter. CTCs were isolated from blood by microfilter based on the size and deformation difference. The SERS bio-probe was composed of crystal-amorphous core-shell B-TiO2 nanoparticles (NPs), alizarin red (AR) as Raman reporter molecules, and a thin protective layer of NH2-PEG2000-COOH (PEG), which provided sufficient binding sites for target molecule of folic acid (FA). Demonstrated by three cell lines of MCF-7 (folate receptor (FR) positive), A549 and Raw264.7 (FR negative), SERS bio-probe of B-TiO2-AR-PEG-FA could distinguish FR positive CTCs from peripheral blood cells efficiently by targeting FR on CTC membranes and ruling out false positive interference of white blood cells (WBCs) with reliability and specificity. Benefiting by these advantages, this strategy enhanced the detection efficiency and veracity, which reduced the detection time within 1.5 h and make the LOD of detection reduced to 2 cells/mL. These features also facilitated successful CTC detection in several clinical cancer patient bloods which illustrates that the integration of microfluidic isolation and SERS detection may open new paths for liquid biopsy.


Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Humanos , Células Neoplásicas Circulantes/patologia , Reprodutibilidade dos Testes , Análise Espectral Raman , Titânio
7.
Nat Biomed Eng ; 4(6): 624-635, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251391

RESUMO

Technologies for the longitudinal monitoring of a person's health are poorly integrated with clinical workflows, and have rarely produced actionable biometric data for healthcare providers. Here, we describe easily deployable hardware and software for the long-term analysis of a user's excreta through data collection and models of human health. The 'smart' toilet, which is self-contained and operates autonomously by leveraging pressure and motion sensors, analyses the user's urine using a standard-of-care colorimetric assay that traces red-green-blue values from images of urinalysis strips, calculates the flow rate and volume of urine using computer vision as a uroflowmeter, and classifies stool according to the Bristol stool form scale using deep learning, with performance that is comparable to the performance of trained medical personnel. Each user of the toilet is identified through their fingerprint and the distinctive features of their anoderm, and the data are securely stored and analysed in an encrypted cloud server. The toilet may find uses in the screening, diagnosis and longitudinal monitoring of specific patient populations.


Assuntos
Aparelho Sanitário , Desenho de Equipamento , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Adulto , Aprendizado Profundo , Fezes/química , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Software , Urina/química , Interface Usuário-Computador
8.
Sci Rep ; 8(1): 16493, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405155

RESUMO

Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Magnetismo , Algoritmos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Magnetismo/instrumentação , Magnetismo/métodos , Modelos Teóricos , Sistemas Automatizados de Assistência Junto ao Leito , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA