Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 189: 110051, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812022

RESUMO

Naphthalene has remained a challenge how to eradicate it from the water because of its carcinogenic risk to humans. In the present study, naphthalene prominently increased the rates of embryonic mortality and malformation, and decreased the hatchability of zebrafish which have a high developmental similarity to humans. Moreover, multiple-organ toxicity were notably found in naphthalene-treated zebrafish. Here, irradiated graphene aerogel (IGA) was successfully prepared from high-energy electron beam to generate more wrinkles, folds, defects and a strong absorption capability for naphthalene, compared with the non-irradiated graphene aerogel. IGA was outstandingly found to remove naphthalene from the embryo culture medium, and subsequently inhibit the embryotoxicity and maintain tissue integrity by restoring cardiac function, attenuating apoptosis signals, recovering eye morphology and structure, reducing expression of heat shock protein 70 in the tissues and promoting behavioral capacity. Meanwhile, no obvious negative impact of IGA was found in the developing zebrafish from embryo to larvae. Consequently, reduction in the toxicity of naphthalene during zebrafish embryogenesis was mediated by IGA as an advanced strategy.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Grafite/química , Naftalenos/análise , Poluentes Químicos da Água/análise , Peixe-Zebra , Animais , Grafite/efeitos da radiação , Grafite/toxicidade , Hidrogéis , Larva/efeitos dos fármacos , Naftalenos/toxicidade , Propriedades de Superfície , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
2.
Anal Chem ; 88(20): 10002-10010, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27618293

RESUMO

Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H+ concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123793, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141506

RESUMO

Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical method which has been applied in many fields, and the reproducibility of the substrate is important for reliable SERS analysis. In present work, an innovative method inspired by the flower planting process is put forward to acquire gold nanoflower (AuNF) SERS substrate. Three steps (digging holes, sowing the gold nanoseeds and seeds grow into gold nanoflowers) are included in the substrate fabrication process, and the influence of preparing conditions (like reacting time and Na3Au(SO3)2 concentration) on the substrate morphology and SERS performance are investigated. The acquired AuNF substrate not only exhibits good SERS performance but also possesses excellent reproducibility while being used to detect the rhodamine 6G (R6G) molecular. The relative standard deviation (RSD) of Raman signals among substrates acquired in distinct batches (substrate-to-substrate) is as low as 6.67 %. Since the AuNF substrate is prepared by the wet chemistry route based on seed-mediated growth and there are no expensive reagents or complicated process used, the new process to obtain AuNF substrate is cost-effective and easy to scale up.

4.
J Cosmet Dermatol ; 22(5): 1685-1691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36683314

RESUMO

BACKGROUND: Silver sulfadiazine is commonly used to treat local burn wounds. Aquacel-Ag is a hydrogen fiber dressing containing ionic silver that reduces burn wound infection and promotes antimicrobial activity. It is necessary to compare the efficacy of the two in the healing of burns. AIMS: The aim of this study was to systematically evaluate the effect of Aquacel-Ag on burn wound healing. METHODS: A computerized search of CNKI, VIP, Wanfang, SinoMed, PubMed, Cochrane Library, EMbase, Science Direct, Web of Science, Wiley Online Library, and Open Access Library databases was performed from January 1, 2000 to December 31, 2021 for randomized controlled clinical trials. The trials on Aquacel-Ag dressing and silver sulfadiazine in the treatment of burns were selected. Meta-analysis was performed using Review Manager 5.0 software. RESULTS: Eleven articles were finally included, with 794 burn patients. Meta-analysis results showed that compared with patients treated with silver sulfadiazine, burn patients treated with Aquacel-Ag dressing had shorter wound healing time [MD = -2.49, 95% CI (-5.64-0.65), p = 0.12], significantly lower tumor necrosis factor-α (TNF-α) level [MD = -0.52, 95% CI (-0.82-0.22), p = 0.0008], higher wound healing rate [MD = 8.41, 95% CI (3.39-13.43), p = 0.001], fewer dressing changes [MD = -3.27, 95% CI (-4.90-1.63), p < 0.0001]. CONCLUSION: Aquacel-Ag dressing can shorten wound healing time and effectively reduce inflammatory reactions in burn patients compared with silver sulfadiazine, but their safety still needs further exploration and analysis.


Assuntos
Anti-Infecciosos Locais , Queimaduras , Humanos , Anti-Infecciosos Locais/uso terapêutico , Bandagens , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Carboximetilcelulose Sódica/uso terapêutico , Prata , Sulfadiazina de Prata/farmacologia , Sulfadiazina de Prata/uso terapêutico , Cicatrização
5.
Nat Commun ; 14(1): 1243, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871035

RESUMO

Nanolattices exhibit attractive mechanical properties such as high strength, high specific strength, and high energy absorption. However, at present, such materials cannot achieve effective fusion of the above properties and scalable production, which hinders their applications in energy conversion and other fields. Herein, we report gold and copper quasi-body centered cubic (quasi-BCC) nanolattices with the diameter of the nanobeams as small as 34 nm. We show that the compressive yield strengths of quasi-BCC nanolattices even exceed those of their bulk counterparts, despite their relative densities below 0.5. Simultaneously, these quasi-BCC nanolattices exhibit ultrahigh energy absorption capacities, i.e., 100 ± 6 MJ m-3 for gold quasi-BCC nanolattice and 110 ± 10 MJ m-3 for copper quasi-BCC nanolattice. Finite element simulations and theoretical calculations reveal that the deformation of quasi-BCC nanolattice is dominated by nanobeam bending. And the anomalous energy absorption capacities substantially stem from the synergy of the naturally high mechanical strength and plasticity of metals, the size reduction-induced mechanical enhancement, and the quasi-BCC nanolattice architecture. Since the sample size can be scaled up to macroscale at high efficiency and affordable cost, the quasi-BCC nanolattices with ultrahigh energy absorption capacity reported in this work may find great potentials in heat transfer, electric conduction, catalysis applications.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121801, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122462

RESUMO

Porous membrane-based nanofiltration separation of small biomolecules is a widely used biotechnology for which size-based selectivity is a critical parameter of technological relevance. Efficient determination of size selectivity calls for an advanced detection method capable of performing sensitive, rapid, and on-membrane examination. Surface-enhanced Raman spectroscopy (SERS) is such a detection method that has been widely recognized as an ultrasensitive technique for trace-level detection with sensitivity down to the single-molecule level. In this work, we for the first time develop a double-sided hierarchical porous membrane-like plasmonic metasurface to realize high-selectivity bimolecular separation and simultaneous ultrasensitive SERS detection. This highly flexible device, consisting of subwavelength nanocone pairs surrounded by randomly orientated sub-5 nm nanogrooves, was prepared by combining customized "top-down" fabrication of conical nanopores in an ion-track registered polycarbonate membrane and self-assembly of nanogrooves on the membrane surface through physical vapor deposition. The unique tip-to-tip oriented conical nanopores in the device enables excellent size-based molecular selectivity; the hierarchical groove-pore structure supports a peculiar cascaded electromagnetic near-field enhancement mechanism, endowing the device with SERS-based molecular detection of ultrahigh sensitivity, uniformity, repeatability, and polarization independence. With such dual structural merits and performance enhancement, we demonstrate effective nanofiltration separation of small-sized adenine from big-sized ss-DNA and synergistic SERS determination of their species. We experimentally demonstrate an ultrasensitive detection of 4-mercaptopyridine down to 10 pM. Together with its unparalleled mechanical flexibility, this double-side-responsive plasmonic metasurface membrane can find great potential in real-world molecular filtration and detection under extremely complex working conditions.


Assuntos
Nanopartículas Metálicas , Nanoporos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Nanotecnologia , DNA
7.
ACS Appl Mater Interfaces ; 15(51): 59422-59431, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38096428

RESUMO

Lithium-ion batteries (LIBs) play a pivotal role as essential components in various applications, including mobile devices, energy storage power supplies, and electric vehicles. The widespread utilization of LIBs underscores their significance in the field of energy storage. High-performance LIBs should exhibit two key characteristics that have been persistently sought: high energy density and safety. The separator, a critical part of LIBs, is of paramount importance in ensuring battery safety, thus requiring its high thermal stability and uniform nanochannels. Here, the novel ion-track etched polyethylene terephthalate (ITE PET) separator is controllably fabricated with ion irradiation technology. Unlike conventional polypropylene (PP) separators, the ITE PET separator demonstrated vertically aligned nanochannels with uniform channel size and distribution. The remarkable characteristics of the ITE PET separator include not only high electrolyte wettability but also exceptional thermal stability, capable of withstanding temperatures as high as 180 °C. Furthermore, the ITE PET separator exhibits a higher lithium-ion transfer number (0.59), which is advantageous in enhancing battery performance. The structural and inherent advantages of ITE PET separators contribute to enhance the C-rate capacity, electrochemical, and long-term cycling (300 cycles) stability observed in the corresponding batteries. The newly developed method for fabricating ITE PET separators, which possess high thermal stability and a uniform channel structure, fulfills the demand for high-temperature-resistant separators without requiring any modification procedures. Moreover, this method can be easily scaled up using simple processes, making it a competitive strategy for producing thermotolerant separators.

8.
ACS Appl Mater Interfaces ; 14(25): 29197-29212, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704847

RESUMO

Extracting clean energy by converting the salinity gradient between river and sea into energy is an effective way to reduce the global pollution and carbon emissions. Reverse electrodialysis (RED) is of great importance to realize the energy conversion assisting the ion-selective membrane. However, its higher ion resistance and lower conversion efficiency results in the undesirable power conversion performance. Here, we demonstrate a 1D/2D hybrid nanochannel system to achieve high osmotic energy conversion and output power. This heterogeneous structure is composed of two structures, in which the subnanometer nanochannels in graphene oxide membrane (GOM) can serve as a selective layer and reduce the ion diffusion energy barrier, while the nanochannel in the polymer can introduce asymmetry to enhance ionic rectification and conversion efficiency. This heterogeneous membrane exhibits excellent cation selectivity and enhanced ionic current rectification (ICR) performance. The application of the GOM/PET hybrid nanochannel system in osmotic energy harvesting is evaluated, and the output power can reach up to 118.2 pW with the energy conversion efficiency of 40.3%. Theoretical calculation indicates that the 1D/2D hybrid system can effectively take the advantage of excellent cation selectivity of 2D lamellar nanochannels to improve its RED performance significantly.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120955, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124484

RESUMO

Surface-enhanced Raman scattering (SERS), due to its high detecting sensitivity and rapid data acquisition ability, has been considered as a powerful technique for label-free ultrasensitive detection of chemical and biochemical analytes. As an important part, the uniform SERS substrate is the prerequisite for this technology being used in all the related areas. Therefore, seeking the fast, convenient and low-cost way to obtain the SERS substrate with high performance and reproducibility never stops in recent decades. In this work, the PC membrane with uniform nanopores obtained by ion irradiation and chemical etching (i.e., ion-track etched PC membrane) was first used to prepare the gold nanostar SERS substrate. The monolayer gold nanostars can be obtained through a one-step redox reaction on the surface of the PC membrane, which not only can act as the base of SERS substrate but also can work as the reaction adjuster. By optimizing the growth conditions, the SERS substrate with uniform monolayer gold nanostars can be fabricated without any complicated procedures and costly equipment fast (in 20 mins). Meanwhile, the prepared flexible gold nanostar SERS substrate exhibits excellent Raman performance, which can effectively detect the analyte R6G with the concentration as low as 1 × 10-10 M and the SERS enhancement factors can be around 3.70 × 105. The new facile SERS substrate preparation method is cost-effective, convenient, fast and easily scale up, which can satisfy the requests of the real applications in many fields.


Assuntos
Ouro , Nanopartículas Metálicas , Oxirredução , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
10.
Nat Commun ; 13(1): 4894, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985996

RESUMO

Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and experimental techniques. Herein, we develop a heterogeneous graphene-based polyethylene terephthalate nanochannel (GPETNC) with controllable ion sieving to overcome those difficulties. Simply by adjusting the applied voltage, ion selectivity among K+, Na+, Li+, Ca2+, and Mg2+ of the GPETNC can be immediately tuned. At negative voltages, the GPETNC serves as a mono/divalent ion selective device by impeding most divalent cations to transport through; at positive voltages, it mimics a biological K+ nanochannel, which conducts K+ much more rapidly than the other ions with K+/ions selectivity up to about 4.6. Besides, the GPETNC also exhibits the promise as a cation-responsive nanofluidic diode with the ability to rectify ion currents. Theoretical calculations indicate that the voltage-dependent ion enrichment/depletion inside the GPETNC affects the effective surface charge density of the utilized graphene subnanopores and thus leads to the electrically controllable ion sieving. This work provides ways to develop heterogeneous nanochannels with tunable ion selectivity toward broad applications.

11.
ACS Appl Mater Interfaces ; 13(7): 9015-9026, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587586

RESUMO

Bioinspired nanoporous membranes show great potential in ionic separation and water filtration by offering high selectivity with less permeation resistance. However, complex processes always limit their applications. Here, we report a convenient approach to introduce ionic selective channels in a micron-thick polycarbonate membrane through swift heavy ion irradiation accompanied by UV sensitization and pulsed-electrical etching. The characteristic dimension of channels was tuned through regulating energy loss of the incident ion and UV sensitization time of the membrane, resulting in the sub-nanoporous membranes with mean channel diameter ranging from <2.4 to 9.7 Å. These membranes showed the voltage-activated ionic transport properties associated with the dehydration effect, and the corresponding I-V characteristics were related to ionic strength, solution pH, ionic type, and channel diameter. It was found that the transmembrane conduction of multivalent ions was severely suppressed compared to monovalent ions, until the size of the membrane channel was comparable to the hydrated diameter of multivalent ions. Ionic sieving experiments also demonstrated the excellent ionic valence selectivity of the membrane. Even for the membrane with a channel diameter close to 1 nm, the Li+/Mg2+ separation ratio was still as high as 40, and an even higher separation ratio was found for Li+/La3+ (>3000).

12.
Nanotechnology ; 21(36): 365605, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20705973

RESUMO

The hallmark of materials science is the ability to tailor the structures of a given material to provide a desired response. In this work, the structures involving crystallinity and crystallographic orientation of Cu nanowires electrochemically fabricated in ion-track templates have been investigated as a function of fabrication condition. Both single crystalline and polycrystalline nanowires were obtained by adjusting applied voltages and temperatures of electrochemical deposition. The anti-Hall-Petch effect was experimentally evidenced in the polycrystalline nanowires. The dominant crystallographic orientations of wires along [111], [100], or [110] directions were obtained by selecting electrochemical deposition conditions, i.e., H(2)SO(4) concentration in electrolyte, applied voltage, and electrodeposition temperature.

13.
ACS Appl Mater Interfaces ; 11(16): 14960-14969, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30921512

RESUMO

Graphene oxide (GO) has become a promising 2D material in many areas, such as gas separation, seawater desalination, antibacterial materials, and so on because of its abundant oxygen-containing functional groups and excellent dispersibility in various solvents. The graphene oxide membrane (GOM), a laminar and channel-rich structure assembled by stacked GO nanosheets, served as a kind of precise and ultrafast separation material has attracted widespread attention in membrane separation field. To break the trade-off between ion permeability and ion selectivity of separation membrane based on GOM, GOM/conical nanopore system is obtained by spin-coating ultrathin GOM on PET conical nanopore, which possesses ion rectification property. Comparing to pure PET conical nanopore, the existence of GOM not only enhances the cation conductance but also makes the ion rectification ratio increase from 4.6 to 238.0 in KCl solution. Assisted by COMSOL simulation, it is proved that the GOM can absorb large amount of cations and act as cation source to improve the ion selectivity and rectification effect of GOM/conical nanopore system. Finally, the chemical stability of GOM/conical nanopore is also investigated and the corresponding results reveal that the GOM/conical nanopore system can perform the ion rectification behavior in a wider pH range than pure PET conical nanopore. The presented findings demonstrate the great potential applications of GOM/conical nanopore system in ionic logic circuits and sensor systems.

14.
ACS Appl Mater Interfaces ; 9(12): 11000-11008, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28262018

RESUMO

Graphene is an ideal candidate for the development of solid state nanopores due to its thickness at the atomic scale and its high chemical and mechanical stabilities. A facile method was adopted to prepare single graphene nanopore supported by PET membrane (G/PET nanopore) within the three steps assisted by the swift heavy ion irradiation and asymmetric etching technology. The inversion of the ion rectification effect was confirmed in G/PET nanopore while comparing with bare PET nanopore in KCl electrolyte solution. By modifying the wall charge state of PET conical nanopore with hydrochloric acid from negative to positive, the ion rectification effect of G/PET nanopore was found to be greatly enhanced and the large rectification ratio up to 190 was obtained during this work. Moreover, the high ionic flux and high ion separation efficiency was also observed in the G/PET nanopore system. By comparing the "on" and "off" state conductance of G/PET nanopore while immersed in the solution with pH value lower than the isoelectric point of the etched PET (IEP, pH = 3.8), the voltage dependence of the off conductance was established and it was confirmed that the large rectification effect was strongly dependent on the particularly low off conductance at higher applied voltage.

15.
Nanomaterials (Basel) ; 7(5)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28505116

RESUMO

Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

16.
Nanomaterials (Basel) ; 6(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335359

RESUMO

Parallel arrays of Ni nanotubes with an external diameter of 150 nm, a wall thickness of 15 nm, and a length of 1.2 ± 0.3 µm were successfully fabricated in ion-track etched polycarbonate (PC) templates by electrochemical deposition. The morphology and crystal structure of the nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Structural analyses indicate that Ni nanotubes have a polycrystalline structure with no preferred orientation. Angle dependent hysteresis studies at room temperature carried out by using a vibrating sample magnetometer (VSM) demonstrate a transition of magnetization between the two different magnetization reversal modes: curling rotation for small angles and coherent rotation for large angles. Furthermore, temperature dependent magnetic analyses performed with a superconducting quantum interference device (SQUID) magnetometer indicate that magnetization of the nanotubes follows modified Bloch's law in the range 60-300 K, while the deviation of the experimental curve from this law below 60 K can be attributed to the finite size effects in the nanotubes. Finally, it was found that coercivity measured at different temperatures follows Kneller's law within the premises of Stoner-Wohlfarth model for ferromagnetic nanostructures.

17.
Nanoscale Res Lett ; 10(1): 481, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26659612

RESUMO

Understanding and controlling structural properties of the materials are crucial in materials research. In this paper, we report that crystallinity and crystallographic orientation of Pd nanowires can be tailored by varying the fabrication conditions during electrochemical deposition in polycarbonate ion-track templates. By changing the deposition temperature during the fabrication process, the nanowires with both single- and poly-crystallinities were obtained. The wires with preferred crystallographic orientations along [111], [100], and [110] directions were achieved via adjusting the applied voltage and temperature during electrochemical deposition.

18.
Sci Rep ; 5: 10258, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25989440

RESUMO

The synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into a secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused (84)Kr(25+), has a high selectivity for permeation of the monovalent metal ions ( Rb(+) > K(+) > Cs(+) > Na(+) > Li(+), based on permeation concentration), but does not allow Cl(-) go through. It is similar to K(+) channels, which would cause an influx of K(+) into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life.


Assuntos
Células Artificiais/química , Células Artificiais/citologia , Grafite/química , Canais Iônicos/química , Aminoácidos/química , Cátions Monovalentes , Metais Pesados , Óxidos
19.
J Environ Radioact ; 101(11): 969-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20797810

RESUMO

The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9.


Assuntos
Poluentes Ambientais/metabolismo , Rhodotorula/metabolismo , Urânio/metabolismo , Adsorção , Biomassa , Recuperação e Remediação Ambiental , Formaldeído/farmacologia , Metanol/farmacologia , Rhodotorula/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA