Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt B): 116394, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323127

RESUMO

Three parallel bioreactors were operated with different inoculation of activated sludge (R1), intertidal sludge (ItS) (R2), and ItS-added AS (R3), respectively, to explore the effects of ItS bioaugmentation on the formation of salt-tolerant aerobic granular sludge (SAGS) and the enhancement of COD removal performance. The results showed that compared to the control (R1-2), R3 promoted a more rapid development of SAGS with a cultivation time of 25 d. Following 110-day cultivation, R3 exhibited a higher granular diameter of 1.3 mm and a higher hydrophobic aromatic protein content than that in control. Compared to the control, the salt-tolerant performance in R3 was also enhanced with the COD removal efficiency of 96.4% due to the higher sludge specific activity of 14.4 g·gVSS-1·d-1 and the salinity inhibition constant of 49.3 gL-1. Read- and genome-resolved metagenomics together indicated that a higher level of tryptophan/tyrosine synthase gene (trpBD, tyrBC) and enrichment of the key gene hosts Rhodobacteraceae, Marinicella in R3, which was about 5.4-fold and 1.4-fold of that in control, could be the driving factors of rapid development of SAGS. Furthermore, the augmented salt-tolerant potential in R3 could result from that R1 was dominated by Rhodospirillaceae, Bacteroidales, which carried more trehalose synthase gene (otsB, treS), while the dominant members Rhodobacteraceae, Marinicella in R3 were main contributors to the glycine betaine synthase gene (ectC, betB, gbsA). This study could provide deeper insights into the rapid development and improved salt-tolerant potential of SAGS via bioaugmentation of intertidal sludge, which could promote the application of hypersaline wastewater treatment.


Assuntos
Esgotos , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Salinidade , Aerobiose
2.
Environ Int ; 137: 105548, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066002

RESUMO

Efforts to produce aerobic granular sludge (AGS) for high-efficient and stable nutrient removal in high saline wastewaters have gained much attention recently. This study was undertaken to describe the phase-related characteristics of the rapid formation of glucose-fed salt-tolerant AGS (SAGS) generated from common municipal activated sludge using metagenomic approaches. The time needed for SAGS formation is about 11 days in a multi-ion matrix salinity of 3%. There were three distinct developmental phases during sludge maturation which were designated: I) the salinity adaptation phase (days 1-2), II) the particle-size transition phase (days 3-5) and III) the maturation and steady-state phase (days 6-11), respectively. Genome-based analysis revealed that during the phase I, members of the genus Mangrovibacter, which has the potential to secrete extracellular polymeric substances (EPS), dominated during the formation of initial SAGS aggregates. During phase II, fungi of the class Saccharomycetes, in particular the genus Geotrichum, became dominant and provided a matrix for bacterial attachment. This mutualistic interaction supported the rapid development and maintenance of mature SAGS. This work characterizes a robust approach for the rapid development of SAGS for efficient saline sewage treatment and provides unique insight into the granulation mechanism occurring during the development process.


Assuntos
Metagenômica , Esgotos , Reatores Biológicos , Salinidade , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA