Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049811

RESUMO

Condensed tannins (CT) in wine are derived from the seeds and skins of grapes, and their composition and content contribute to the bitterness/astringency characteristics and ageing potential of the wine. Global warming has accelerated the ripening process of grape berries, making them out of sync with seed ripening. To understand the influence of berry ripening on the seed CT composition and content, we analyzed the changes in the soluble and insoluble CT in the seeds of 'Cabernet Sauvignon' grapes from two vineyards over two years. The results showed that the seed-soluble CT presented a slight downward trend in fluctuation during grape berry development, while the insoluble CT increased continuously before the véraison and remained at a high level afterwards. Relatively speaking, a lower sugar increment in developing grape berries favored the conversion of seed CT towards a higher degree of polymerization. The terminal unit of soluble CT was dominated by epigallocatechin gallate, the content of which decreased as the seeds matured. It is suggested that the seeds should be fully matured to reduce this bitter component in tannins. This study provides a reference for us to control the grape ripening process and produce high-quality grapes for wine making.


Assuntos
Proantocianidinas , Vitis , Vinho , Frutas/química , Taninos/análise , Sementes/química , Vinho/análise
2.
Plants (Basel) ; 13(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38891351

RESUMO

This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and ß-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes.

3.
Foods ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338629

RESUMO

The loss of red hue in dry red wine has been a persistent issue for wine enterprises in western China. We investigated the changes in anthocyanins and non-anthocyanin phenols during the industrial-scale fermentation and one-year bottle aging of Vitis vinifera L. Merlot and Vitis vinifera L. Marselan, respectively, using the grapes in the Ningxia region. We also examined their correlation with color characterization. The study found that both anthocyanins and non-anthocyanin phenolics were rapidly extracted from grapes during alcohol fermentation. However, their concentrations decreased rapidly during malolactic fermentation. On the other hand, Vitisin A and Vitisin B were formed during alcoholic fermentation and decreased slowly from malolactic fermentation to storage period. Directly polymerized pigments (F-A and A-F), bridged polymerized pigments (A-e-F), and flavanyl-pyranoanthocyanins (A-v-F) from the reactions of anthocyanins (A) and flavan-3-ols (F), as well as pinotins were generated during the later stages of alcoholic fermentation, and remained at a high level throughout malolactic fermentation and bottle storage. Partial least squares regression and Pearson correlation analyses revealed that the red hue (a* value) of 'Merlot' and 'Marselan' wines was closely associated with monomeric anthocyanins and F-A type pigments. Furthermore, four pinotin components were positively correlated with the red hue (a* value) of 'Merlot' wine. These primary red components of the two varieties had a positive correlation with the level of flavan-3-ols. The data suggest that elevating the flavan-3-ol concentration during fermentation aids in improving the color stability of red wine.

4.
J Agric Food Chem ; 72(2): 1228-1243, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181223

RESUMO

It is widely accepted that prevéraison application of naphthaleneacetic acid (NAA) can delay the ripening of grapes and improve their quality. However, how NAA impacts grape aroma compound concentrations remains unclear. This study incorporated the analyses of aroma metabolome, phytohormones, and transcriptome of Vitis vinifera L. cv. Cabernet Sauvignon grapes cultivated in continental arid/semiarid regions of western China. The analyses demonstrated that NAA application increased ß-damascenone and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in the harvested grapes by delaying véraison and upregulating VvPSY1 and VvCCD4b expressions. Additionally, NAA treatment decreased 2-isobutyl-3-methoxypyrazine (IBMP) at the same phenological stage. Notably, abscisic acid (ABA) levels increased in NAA-treated grapes during véraison, which triggered further changes in norisoprenoid metabolisms. The ABA-responsive factor VvABF2 was potentially involved in VvPSY1 positive modulation, while the auxin response factor VvARF10 may play a role in VvCCD4b upregulation and VvOMT2 downregulation during NAA induction. VvARF10 possibly acts as a crosstalk node between the ABA and auxin signaling pathways following NAA treatment in regulating aroma biosynthesis.


Assuntos
Vitis , Vinho , Ácido Abscísico/metabolismo , Vitis/genética , Vitis/metabolismo , Ácidos Indolacéticos/metabolismo , Odorantes/análise , Transcriptoma , Frutas/química , Metaboloma , Ácidos Naftalenoacéticos/análise , Vinho/análise
5.
Foods ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563903

RESUMO

During the storage of wines in bottles, especially white wines, tartrate crystallization often occurs, which reduces the commercial value of the wines and therefore needs to be avoided by performing cold stabilization treatments before bottling. However, whether different cold treatment durations impact the quality of a wine's aroma has not yet been of special concern. This research was conducted at an industrial scale to explore how cold treatments at -5.3 °C for 10 to 15 days impact the organic acids, aroma compounds, and sensory quality of Riesling dry white wines, and the variation was documented at the end of treatment, and at 6 and 12 months of bottle storage. The results showed that cold treatments significantly reduced tartaric acid concentrations and significantly affected the concentrations of most aroma components in the wines only after 12 months of bottle storage, including the main components of esters, norisoprenoids, terpenoids, and furfural. Moreover, the concentrations of some components showed an increasing trend with the bottle storage, especially 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), the characteristic volatile of Riesling wine, suggesting that an acidic condition resulting from cold treatment might facilitate the conversion of some aroma precursors into volatiles. In conclusion, cold stabilization treatments, within limits, can improve tartaric acid stability and could promote the conservation of aroma compounds during bottle storage without adversely affecting the aroma profile of the wines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA