Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 100(2): 224-233, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31243341

RESUMO

The Ca2+ signal is essential in both hypoxia- and epidermal growth factor (EGF)-mediated epithelial to mesenchymal transition (EMT) in MDA-MB-468 breast cancer cells. This finding suggests that Ca2+-permeable ion channels participate in the induction of expression of some mesenchymal markers such as vimentin. However, the ion channels involved in vimentin expression induction have not been fully characterized. This work sought to define how differential modulation of the calcium signal effects the induction of vimentin and the Ca2+ influx pathways involved. We identified that the intracellular Ca2+ chelator EGTA-AM, cytochalasin D (a modulator of cytoskeletal dynamics and cell morphology), and the sarco/endoplasmic reticulum ATPase inhibitor thapsigargin are all inducers of vimentin in MDA-MB-468 breast cancer cells. EGTA-AM- and thapsigargin-mediated induction of vimentin expression in MDA-MB-468 cells involves store-operated Ca2+ entry, as evidenced by sensitivity to silencing of the molecular components of this pathway, STIM1 and ORAI1. In stark contrast, cytochalasin D-mediated vimentin induction was insensitive to silencing of ORAI1, despite sensitivity to silencing of its canonical activator the endoplasmic reticulum Ca2+ sensor STIM1. Cytochalasin D-mediated vimentin induction was, however, sensitive to silencing of another reported STIM1 target, TRPC1. Subsequent studies identified that EGTA-AM-induced vimentin expression also partially involved a TRPC1-dependent pathway. These studies define a complex interplay between vimentin expression in this model and the specific Ca2+-permeable ion channels involved. The complexity in the engagement of different Ca2+ influx pathways that regulate vimentin induction are opportunities but also potential challenges in targeting Ca2+ signaling to block EMT in cancer cells. Our findings further highlight the need to identify potential indispensable ion channels that can regulate induction of specific mesenchymal markers via different stimuli.


Assuntos
Sinalização do Cálcio/fisiologia , Proteína ORAI1/metabolismo , Canais de Cátion TRPC/metabolismo , Vimentina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia
2.
J Cell Sci ; 130(14): 2292-2305, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559303

RESUMO

Hypoxia is a feature of the tumour microenvironment that promotes invasiveness, resistance to chemotherapeutics and cell survival. Our studies identify the transient receptor potential canonical-1 (TRPC1) ion channel as a key component of responses to hypoxia in breast cancer cells. This regulation includes control of specific epithelial to mesenchymal transition (EMT) events and hypoxia-mediated activation of signalling pathways such as activation of the EGFR, STAT3 and the autophagy marker LC3B, through hypoxia-inducible factor-1α (HIF1α)-dependent and -independent mechanisms. TRPC1 regulated HIF1α levels in PTEN-deficient MDA-MB-468 and HCC1569 breast cancer cell lines. This regulation arises from effects on the constitutive translation of HIF1α under normoxic conditions via an Akt-dependent pathway. In further support of the role of TRPC1 in EMT, its expression is closely associated with EMT- and metastasis-related genes in breast tumours, and is enhanced in basal B breast cancer cell lines. TRPC1 expression is also significantly prognostic for basal breast cancers, particularly those classified as lymph node positive. The defined roles of TRPC1 identified here could be therapeutically exploited for the control of oncogenic pathways in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Hipóxia Celular/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPC/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Claudina-4/metabolismo , Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Feminino , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/biossíntese , Canais de Cátion TRPC/genética
3.
Biochim Biophys Acta ; 1848(10 Pt B): 2502-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25150047

RESUMO

It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/genética , Cálcio/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Canais de Cálcio/genética , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Potenciais da Membrana , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral
4.
Cancer Cell Int ; 16: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034617

RESUMO

BACKGROUND: Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer to predict therapeutic responses will help optimise patient care. Calcium (Ca(2+))-signalling is important in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca(2+)-signalling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins involved in Ca(2+)-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome. METHODS: Expression levels of a panel of Ca(2+)-pumps, channels and channel regulators were assessed using RT-qPCR in resistant and sensitive age-matched SKBR3 breast cancer cells, established through continuous culture in the absence or presence of trastuzumab. The role of Cav3.2 in the acquisition of trastuzumab-resistance was assessed through pharmacological inhibition and induced overexpression. Levels of Cav3.2 were assessed in a panel of non-malignant and malignant breast cell lines using RT-qPCR and in patient samples representing different molecular subtypes (PAM50 cohort). Patient survival was also assessed in samples stratified by Cav3.2 expression (METABRIC and KM-Plotter cohort). RESULTS: Increased mRNA of Cav3.2 was a feature of both acquired and intrinsic trastuzumab-resistant SKBR3 cells. However, pharmacological inhibition of Cav3.2 did not restore trastuzumab-sensitivity nor did Cav3.2 overexpression induce the expression of markers associated with resistance, suggesting that Cav3.2 is not a driver of trastuzumab-resistance. Cav3.2 levels were significantly higher in luminal A, luminal B and HER2-enriched subtypes compared to the basal subtype. High levels of Cav3.2 were associated with poor outcome in patients with oestrogen receptor positive (ER+) breast cancers, whereas Cav3.2 levels were correlated positively with patient survival after chemotherapy in patients with HER2-positive breast cancers. CONCLUSION: Our study identified elevated levels of Cav3.2 in trastuzumab-resistant SKBR3 cell lines. Although not a regulator of trastuzumab-resistance in HER2-positive breast cancer cells, Cav3.2 may be a potential differential biomarker for survival and treatment response in specific breast cancer subtypes. These studies add to the complex and diverse role of Ca(2+)-signalling in breast cancer progression and treatment.

5.
Cancers (Basel) ; 11(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754719

RESUMO

The remodeling of specific calcium-permeable ion channels is a feature of some breast cancer subtypes. ORAI1 is a protein that forms a calcium-permeable ion channel responsible for store-operated calcium entry (SOCE) in a variety of cell types. ORAI3, a related isoform, is not a regulator of SOCE in most cell types. However, ORAI3 does control SOCE in many estrogen receptor-positive breast cancer cell lines, where it also controls proliferation. ORAI1 is a well-characterized regulator of the proliferation and migration of many basal breast cancer cells; however, the role of ORAI3 in these types of breast cancer cells remains unclear. Here, we sought to define ORAI1 and ORAI3 expression in breast cancer cell lines of different molecular subtypes and assess the potential role and regulation of ORAI3 in basal breast cancer cells. Our study demonstrates that elevated ORAI1 is a feature of basal-like breast cancers, while elevated ORAI3 is a feature of luminal breast cancers. Intriguingly, we found that ORAI3 is over-expressed in the mesenchymal subtype of triple-negative breast cancer. Given this, we assessed ORAI3 levels in the presence of two inducers of the mesenchymal phenotype, hypoxia and epidermal growth factor (EGF). Hypoxia induced ORAI3 levels in basal breast cancer cell lines through a pathway involving hypoxia-inducible factor-1 alpha (HIF1α. The silencing of ORAI3 attenuated hypoxia-associated phosphorylation of the EGF receptor (EGFR) and the expression of genes associated with cell migration and inflammatory/immune responses in the MDA-MB-468 model of basal breast cancer. Although elevated ORAI3 levels were not associated with survival; basal, estrogen receptor-negative and triple-negative breast cancers with high ORAI3 and low ORAI1 levels were associated with poorer clinical outcomes. This study defines ORAI3 as a potential fine-tuner for processes relevant to the progression of basal breast cancers.

6.
Life Sci ; 198: 128-135, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496495

RESUMO

AIMS: To assess levels of the calcium permeable transient receptor potential cation channel, subfamily melastatin, member 8 (TRPM8) in breast cancer molecular subtypes and to assess the consequences of TRPM8 pharmacological inhibition with AMTB (an inhibitor of TRPM8) on breast cancer cell lines. MATERIALS AND METHODS: Cell viability and migration of breast cancer cells was determined using MTS assays and wound healing assays, respectively. RNA-Seq analysis of breast tumours and qPCR in breast cancer cell lines were used to assess mRNA levels of ion channels. Membrane potential assays were employed to assess the effects of AMTB against specific voltage gated sodium channels (NaV). KEY FINDINGS: TRPM8 levels were significantly higher in breast cancers of the basal molecular subtype. AMTB decreased viable cell number in MDA-MB-231 and SK-BR-3 breast cancer cell lines (30 and 100 µM), and also reduced the migration of MDA-MB-231 cells (30 µM). However, these effects were independent of TRPM8, as no TRPM8 mRNA was detected in MDA-MB-231 cells. AMTB was identified as an inhibitor of NaV isoforms. NaV1.1-1.9 were expressed in a number of breast cancer cell lines, with NaV1.5 mRNA highest in MDA-MB-231 cells compared to the other breast cancer cell lines assessed. SIGNIFICANCE: TRPM8 levels may be elevated in basal breast cancers, however, TRPM8 expression appears to be lost in many breast cancer cell lines. Some of the effects of AMTB attributed to TRPM8 may be due to effects on NaV channels.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias da Mama/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Tiofenos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Potenciais da Membrana , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA