Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(12): 261, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382649

RESUMO

The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights.


Assuntos
Neoplasias , Humanos , Neoplasias/classificação , Algoritmos , Máquina de Vetores de Suporte , Biomarcadores Tumorais/genética , Teorema de Bayes , Biologia Computacional/métodos , Feminino
2.
J Med Syst ; 48(1): 10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193948

RESUMO

Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.


Assuntos
Algoritmos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Pessoal de Saúde , Aprendizado de Máquina , Máquina de Vetores de Suporte
3.
J Cancer Res Clin Oncol ; 150(10): 455, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390265

RESUMO

PROBLEM: Breast cancer is a leading global health issue, contributing to high mortality rates among women. The challenge of early detection is exacerbated by the high dimensionality and complexity of gene expression data, which complicates the classification process. AIM: This study aims to develop an advanced deep learning model that can accurately detect breast cancer using RNA-Seq gene expression data, while effectively addressing the challenges posed by the data's high dimensionality and complexity. METHODS: We introduce a novel hybrid gene selection approach that combines the Harris Hawk Optimization (HHO) and Whale Optimization (WO) algorithms with deep learning to improve feature selection and classification accuracy. The model's performance was compared to five conventional optimization algorithms integrated with deep learning: Genetic Algorithm (GA), Artificial Bee Colony (ABC), Cuckoo Search (CS), and Particle Swarm Optimization (PSO). RNA-Seq data was collected from 66 paired samples of normal and cancerous tissues from breast cancer patients at the Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal, India. Sequencing was performed by Biokart Genomics Lab, Bengaluru, India. RESULTS: The proposed model achieved a mean classification accuracy of 99.0%, consistently outperforming the GA, ABC, CS, and PSO methods. The dataset comprised 55 female breast cancer patients, including both early and advanced stages, along with age-matched healthy controls. CONCLUSION: Our findings demonstrate that the hybrid gene selection approach using HHO and WO, combined with deep learning, is a powerful and accurate tool for breast cancer detection. This approach shows promise for early detection and could facilitate personalized treatment strategies, ultimately improving patient outcomes.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , RNA-Seq , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Humanos , Feminino , RNA-Seq/métodos , Algoritmos , Detecção Precoce de Câncer/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA