Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Brain ; 147(2): 427-443, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671615

RESUMO

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1ß secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , c-Mer Tirosina Quinase/metabolismo , Doença por Corpos de Lewy/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Proteínas Tirosina Quinases , Sinucleinopatias/metabolismo
2.
Eur J Neurosci ; 59(10): 2465-2482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487941

RESUMO

The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Neurônios Dopaminérgicos , Sistema Nervoso Entérico , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Camundongos , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Camundongos Transgênicos , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Masculino , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética
3.
Glia ; 71(5): 1278-1293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680780

RESUMO

Efforts to understand microglia function in health and diseases have been hindered by the lack of culture models that recapitulate in situ cellular properties. In recent years, the use of serum-free media with brain-derived growth factors (colony stimulating factor 1 receptor [CSF1R] ligands and TGF-ß1/2) have been favored for the maintenance of rodent microglia as they promote morphological features observed in situ. Here we study the functional and transcriptomic impacts of such media on human microglia (hMGL). Media formulation had little impact on microglia transcriptome assessed by RNA sequencing which was sufficient to significantly alter microglia capacity to phagocytose myelin debris and to elicit an inflammatory response to lipopolysaccharide. When compared to immediately ex vivo microglia from the same donors, the addition of fetal bovine serum to culture media, but not growth factors, was found to aid in the maintenance of key signature genes including those involved in phagocytic processes. A phenotypic shift characterized by CSF1R downregulation in culture correlated with a lack of reliance on CSF1R signaling for survival. Consequently, no improvement in cell survival was observed following culture supplementation with CSF1R ligands. Our study provides better understanding of hMGL in culture, with observations that diverge from those previously made in rodent microglia.


Assuntos
Microglia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Microglia/metabolismo , Meios de Cultura/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Receptores de Fator Estimulador de Colônias/metabolismo
4.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254100

RESUMO

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Assuntos
Microglia , Transcriptoma , Humanos , Criança , Adolescente , Microglia/metabolismo , Longevidade , Fagocitose , Análise de Sequência de RNA
5.
Ann Neurol ; 91(2): 178-191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952986

RESUMO

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Adulto , Morte Celular , Linhagem da Célula , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma , Adulto Jovem
6.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202462

RESUMO

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Encéfalo/patologia , Morte Celular , Glucose/metabolismo , Células Cultivadas
7.
Glia ; 70(10): 1938-1949, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735919

RESUMO

Morphological and emerging molecular studies have provided evidence for heterogeneity within the oligodendrocyte population. To address the regional and age-related heterogeneity of human mature oligodendrocytes (MOLs) we applied single-cell RNA sequencing to cells isolated from cortical/subcortical, subventricular zone brain tissue samples, and thoracolumbar spinal cord samples. Unsupervised clustering of cells identified transcriptionally distinct MOL subpopulations across regions. Spinal cord MOLs, but not microglia, exhibited cell-type-specific upregulation of immune-related markers compared to the other adult regions. SVZ MOLs showed an upregulation of select number of development-linked transcription factors compared to other regions; however, pseudotime trajectory analyses did not identify a global developmental difference. Age-related analysis of cortical/subcortical samples indicated that pediatric MOLs, especially from under age 5, retain higher expression of genes linked to development and to immune activity with pseudotime analysis favoring a distinct developmental stage. Our regional and age-related studies indicate heterogeneity of MOL populations in the human CNS that may reflect developmental and environmental influences.


Assuntos
Oligodendroglia , Medula Espinal , Encéfalo , Criança , Pré-Escolar , Humanos , Microglia , Oligodendroglia/metabolismo
8.
J Immunol ; 205(2): 398-406, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540991

RESUMO

Vitamin D deficiency is a major environmental risk factor for the development of multiple sclerosis. The major circulating metabolite of vitamin D (25-hydroxyvitamin D) is converted to the active form (calcitriol) by the hydroxylase enzyme CYP27B1 In multiple sclerosis lesions, the tyrosine kinase MerTK expressed by myeloid cells regulates phagocytosis of myelin debris and apoptotic cells that can accumulate and inhibit tissue repair and remyelination. In this study, we explored the effect of calcitriol on homeostatic (M-CSF, TGF-ß-treated) and proinflammatory (GM-CSF-treated) human monocyte-derived macrophages and microglia using RNA sequencing. Transcriptomic analysis revealed significant calcitriol-mediated effects on both Ag presentation and phagocytosis pathways. Calcitriol downregulated MerTK mRNA and protein expression in both myeloid populations, resulting in reduced capacity of these cells to phagocytose myelin and apoptotic T cells. Proinflammatory myeloid cells expressed high levels of CYP27B1 compared with homeostatic myeloid cells. Only proinflammatory cells in the presence of TNF-α generated calcitriol from 25-hydroxyvitamin D, resulting in repression of MerTK expression and function. This selective production of calcitriol in proinflammatory myeloid cells has the potential to reduce the risk for autoantigen presentation while retaining the phagocytic ability of homeostatic myeloid cells.


Assuntos
Encéfalo/patologia , Inflamação/metabolismo , Macrófagos/imunologia , Microglia/imunologia , Esclerose Múltipla/metabolismo , Vitamina D/metabolismo , c-Mer Tirosina Quinase/metabolismo , Apresentação de Antígeno , Autoantígenos/imunologia , Autoantígenos/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Homeostase , Humanos , Inflamação/imunologia , Esclerose Múltipla/imunologia , Fagocitose , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , c-Mer Tirosina Quinase/genética
9.
Glia ; 68(4): 811-829, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724770

RESUMO

Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Regeneração Nervosa/imunologia , Neuroglia/imunologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Especificidade da Espécie
10.
Glia ; 68(6): 1291-1303, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958186

RESUMO

Characterizing the developmental trajectory of oligodendrocyte progenitor cells (OPC) is of great interest given the importance of these cells in the remyelination process. However, studies of human OPC development remain limited by the availability of whole cell samples and material that encompasses a wide age range, including time of peak myelination. In this study, we apply single cell RNA sequencing to viable whole cells across the age span and link transcriptomic signatures of oligodendrocyte-lineage cells with stage-specific functional properties. Cells were isolated from surgical tissue samples of second-trimester fetal, 2-year-old pediatric, 13-year-old adolescent, and adult donors by mechanical and enzymatic digestion, followed by percoll gradient centrifugation. Gene expression was analyzed using droplet-based RNA sequencing (10X Chromium). Louvain clustering analysis identified three distinct cellular subpopulations based on 5,613 genes, comprised of an early OPC (e-OPC) group, a late OPC group (l-OPC), and a mature OL (MOL) group. Gene ontology terms enriched for e-OPCs included cell cycle and development, for l-OPCs included extracellular matrix and cell adhesion, and for MOLs included myelination and cytoskeleton. The e-OPCs were mostly confined to the premyelinating fetal group, and the l-OPCs were most highly represented in the pediatric age group, corresponding to the peak age of myelination. Cells expressing a signature characteristic of l-OPCs were identified in the adult brain in situ using RNAScope. These findings highlight the transcriptomic variability in OL-lineage cells before, during, and after peak myelination and contribute to identifying novel pathways required to achieve remyelination.


Assuntos
Diferenciação Celular/fisiologia , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Células-Tronco/citologia , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Humanos , Bainha de Mielina/classificação , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Análise de Sequência de RNA/métodos , Células-Tronco/metabolismo
11.
J Cell Physiol ; 233(4): 3603-3614, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29044560

RESUMO

Our understanding of the mechanism of cell fate transition during the direct reprogramming of fibroblasts into various central nervous system (CNS) neural cell types has been limited by the lack of a comprehensive analysis on generated cells, independently and in comparison with other CNS neural cell types. Here, we applied an integrative approach on 18 independent high throughput expression data sets to gain insight into the regulation of the transcriptome during the conversion of fibroblasts into induced neural stem cells, induced neurons (iNs), induced astrocytes, and induced oligodendrocyte progenitor cells (iOPCs). We found common down-regulated genes to be mostly related to fibroblast-specific functions, and suggest their potential as markers for screening of the silencing of the fibroblast-specific program. For example, Tagln was significantly down-regulated across all considered data sets. In addition, we identified specific profiles of up-regulated genes for each CNS neural cell types, which could be potential markers for maturation and efficiency screenings. Furthermore, we identified the main TFs involved in the regulation of the gene expression program during direct reprogramming. For example, in the generation of iNs from fibroblasts, the Rest TF was the main regulator of this reprogramming. In summary, our computational approach for meta-analyzing independent expression data sets provides significant details regarding the molecular mechanisms underlying the regulation of the gene expression program, and also suggests potentially useful candidate genes for screening down-regulation of fibroblast gene expression profile, maturation, and efficiency, as well as candidate TFs for increasing the efficiency of the reprogramming process.


Assuntos
Sistema Nervoso Central/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo , Transcriptoma/fisiologia , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo
12.
J Cell Biochem ; 119(1): 237-239, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28467644

RESUMO

In the current study, we analyzed ten gene expression data sets including RNA-sequencing and microarray experiment data during the direct reprogramming of mouse and human fibroblasts to induced neurons and found common gene expression pattern across all data sets for this conversion.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Animais , Humanos , Camundongos
13.
J Cell Physiol ; 232(8): 2053-2062, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27579918

RESUMO

Ectopic expression of a defined set of transcription factors (TFs) can directly convert fibroblasts into a cardiac myocyte cell fate. Beside inefficiency in generating induced cardiomyocytes (iCMs), the molecular mechanisms that regulate this process remained to be well defined. The main purpose of this study was to provide better insight on the transcriptome regulation and to introduce a new strategy for candidating TFs for the transdifferentiation process. Eight mouse and three human high quality microarray data sets were analyzed to find differentially expressed genes (DEGs), which we integrated with TF-binding sites and protein-protein interactions to construct gene regulatory and protein-protein interaction networks. Topological and biological analyses of constructed gene networks revealed the main regulators and most affected biological processes. The DEGs could be categorized into two distinct groups, first, up-regulated genes that are mainly involved in cardiac-specific processes and second, down-regulated genes that are mainly involved in fibroblast-specific functions. Gata4, Mef2a, Tbx5, Tead4 TFs were identified as main regulators of cardiac-specific gene expression program; and Trp53, E2f1, Myc, Sfpi1, Lmo2, and Meis1 were identified as TFs which mainly regulate the expression of fibroblast-specific genes. Furthermore, we compared gene expression profiles and identified TFs between mouse and human to find the similarities and differences. In summary, our strategy of meta-analyzing the data of high-throughput techniques by computational approaches, besides revealing the mechanisms involved in the regulation of the gene expression program, also suggests a new approach for increasing the efficiency of the direct reprogramming of fibroblasts into iCMs. J. Cell. Physiol. 232: 2053-2062, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Linhagem da Célula , Transdiferenciação Celular , Fibroblastos/metabolismo , Cardiopatias/genética , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Animais , Reprogramação Celular , Biologia Computacional , Bases de Dados Genéticas , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Camundongos , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Mapas de Interação de Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
J Cell Biochem ; 118(11): 3976-3985, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28401644

RESUMO

Features of pancreatic cancers include high mortality rates caused by rapid tumor progression and a lack of effective therapy. Underpinning the molecular mechanisms involved in the alteration of the gene expression program in the pancreatic cancer remains to be understood. In the current study, we performed a comprehensive analysis using 282 pancreatic tumor and normal samples from seven independent expression data sets to provide a better view on the interactions between different transcription factors (TFs) and the most affected biological pathways in pancreatic cancer. We highlighted common differentially expressed genes (DEGs) and common affected processes within pancreatic cancer samples. We revealed 16 main DE-TFs that regulated gene expression alterations as well as the most significant processes in pancreatic cancer compared to normal cells. For example, we found the upregulated FOXM1 to be a top regulator of pancreatic cellular transformation based on results from different analyses, including from its regulation of gene regulatory networks, its presence in protein complex, its significant regulation of genes related to cancer pathways, and its regulation of most of the identified DE-TFs. Furthermore, we provided a model and assessed the role of different DE-TFs in the regulation of the most affected pancreatic- and cancer-specific processes. In conclusion, our bioinformatics meta-analysis of high throughput expression data sets, besides clarifying common affected genes and pathways, also showed the mechanisms involved in regulating these common profiles. Our results, especially for DE-TFs, could potentially be useful for screening for pancreatic cancer, and for confirming or determining novel pharmacological targets. J. Cell. Biochem. 118: 3976-3985, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Bases de Dados Genéticas , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Humanos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Fatores de Transcrição/genética
15.
J Cell Physiol ; 231(9): 1994-2006, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26755186

RESUMO

The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Endoderma/citologia , Redes Reguladoras de Genes , Pâncreas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Ativinas/metabolismo , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Humanas/citologia , Humanos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Neural Regen Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934385

RESUMO

ABSTRACT: Mature oligodendrocytes form myelin sheaths that are crucial for the Insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.

17.
Brain Commun ; 6(2): fcae109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601917

RESUMO

Metformin restores the myelination potential of aged rat A2B5+ oligodendrocyte progenitor cells and may enhance recovery in children with post-radiation brain injury. Human late progenitor cells (O4+A2B5+) have a superior capacity to ensheath nanofibres compared to mature oligodendrocytes, with cells from paediatric sources exceeding adults. In this study, we assessed the effects of metformin on ensheathment capacity of human adult and paediatric progenitors and mature oligodendrocytes and related differences to transcriptional changes. A2B5+ progenitors and mature cells, derived from surgical tissues by immune-magnetic separation, were assessed for ensheathment capacity in nanofibre plates over 2 weeks. Metformin (10 µM every other day) was added to selected cultures. RNA was extracted from treated and control cultures after 2 days. For all ages, ensheathment by progenitors exceeded mature oligodendrocytes. Metformin enhanced ensheathment by adult donor cells but reduced ensheathment by paediatric cells. Metformin marginally increased cell death in paediatric progenitors. Metformin-induced changes in gene expression are distinct for each cell type. Adult progenitors showed up-regulation of pathways involved in the process of outgrowth and promoting lipid biosynthesis. Paediatric progenitors showed a relatively greater proportion of down- versus up-regulated pathways, these involved cell morphology, development and synaptic transmission. Metformin-induced AMP-activated protein kinase activation in all cell types; AMP-activated protein kinase inhibitor BML-275 reduced functional metformin effects only with adult cells. Our results indicate age and differentiation stage-related differences in human oligodendroglia lineage cells in response to metformin. Clinical trials for demyelinating conditions will indicate how these differences translate in vivo.

18.
Mol Neurodegener ; 19(1): 31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576039

RESUMO

BACKGROUND: Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet, since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling, it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R. METHODS: Serial modifications to an existing iMGL protocol were made, including but not limited to changes in growth factor combination to drive microglial differentiation, until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines, the quality of the new iMGL protocol was validated through cell yield assessment, measurement of microglia marker expression, transcriptomic comparison to primary microglia, and evaluation of inflammatory and phagocytic activities. Similarly, molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL. RESULTS: The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol, decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally, ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 (P2RY12) expression, a heightened capacity to internalize myelin, as well as heightened inflammatory response to Pam3CSK4. Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency, as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL, and in CSF1RWT/KO and CSF1RWT/E633K iMGL compared to their respective isogenic controls. CONCLUSIONS: We optimized a pre-existing iMGL protocol, generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol, we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant, with preliminary characterization pointing toward functional alterations in migratory, phagocytic and inflammatory activities.


Assuntos
Leucoencefalopatias , Microglia , Adulto , Humanos , Diferenciação Celular , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Microglia/metabolismo , Fosforilação , Células-Tronco/metabolismo
20.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408029

RESUMO

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Espécies Reativas de Oxigênio/metabolismo , Oligodendroglia/patologia , Morte Celular , Esclerose Múltipla Crônica Progressiva/patologia , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA