Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579825

RESUMO

Atherosclerosis is characterized by the plaque formation that restricts intraarterial blood flow. The disturbed blood flow with the associated oscillatory stress (OS) at the arterial curvatures and branch points can trigger endothelial activation and is one of the risk factors of atherosclerosis. Many studies reported the mechanotransduction related to OS and atherogenesis; however, the transcriptional and posttranscriptional regulatory mechanisms of atherosclerosis remain unclear. Herein, we investigated the role of N6-methyladenosine (m6A) RNA methylation in mechanotransduction in endothelial cells (ECs) because of its important role in epitranscriptome regulation. We have identified m6A methyltransferase METTL3 as a responsive hub to hemodynamic forces and atherogenic stimuli in ECs. OS led to an up-regulation of METTL3 expression, accompanied by m6A RNA hypermethylation, increased NF-κB p65 Ser536 phosphorylation, and enhanced monocyte adhesion. Knockdown of METTL3 abrogated this OS-induced m6A RNA hypermethylation and other manifestations, while METTL3 overexpression led to changes resembling the OS effects. RNA-sequencing and m6A-enhanced cross-linking and immunoprecipitation (eCLIP) experiments revealed NLRP1 and KLF4 as two hemodynamics-related downstream targets of METTL3-mediated hypermethylation. The METTL3-mediated RNA hypermethylation up-regulated NLRP1 transcript and down-regulated KLF4 transcript through YTHDF1 and YTHDF2 m6A reader proteins, respectively. In the in vivo atherosclerosis model, partial ligation of the carotid artery led to plaque formation and up-regulation of METTL3 and NLRP1, with down-regulation of KLF4; knockdown of METTL3 via repetitive shRNA administration prevented the atherogenic process, NLRP3 up-regulation, and KLF4 down-regulation. Collectively, we have demonstrated that METTL3 serves a central role in the atherogenesis induced by OS and disturbed blood flow.


Assuntos
Adenosina/análogos & derivados , Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Metiltransferases/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo , Animais , Aterosclerose/genética , Endotélio Vascular/patologia , Epigênese Genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas NLR/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células THP-1 , Transcriptoma
2.
Hum Mol Genet ; 29(9): 1454-1464, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32277753

RESUMO

The mutations in the genes encoding the subunits of complex I of the mitochondrial electron transport chain are the most common cause of Leber's hereditary optic neuropathy (LHON), a maternal hereditary disease characterized by retinal ganglion cell (RGC) degeneration. The characteristics of incomplete penetrance indicate that nuclear genetic and environmental factors also determine phenotypic expression of LHON. Therefore, further understanding of the role of mutant mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit proteins and nuclear genetic factors/environmental effects in the etiology of LHON is needed. In this study, we generated human-induced pluripotent stem cells (hiPSCs) from healthy control, unaffected LHON mutation carrier, and affected LHON patient. hiPSC-derived RGCs were used to study the differences between affected and unaffected carriers of mitochondrial DNA point mutation m.11778G > A in the MT-ND4 gene. We found that both mutated cell lines were characterized by increase in reactive oxygen species production, however, only affected cell line had increased levels of apoptotic cells. We found a significant increase in retrograde mitochondria and a decrease in stationary mitochondria in the affected RGC axons. In addition, the messenger RNA and protein levels of KIF5A in the LHON-affected RGCs were significantly reduced. Antioxidant N-acetyl-L-cysteine could restore the expression of KIF5A and the normal pattern of mitochondrial movement in the affected RGCs. To conclude, we found essential differences in the mutually dependent processes of oxidative stress, mitochondrial transport and apoptosis between two LHON-specific mutation carrier RGC cell lines, asymptomatic carrier and disease-affected, and identified KIF5A as a central modulator of these differences.


Assuntos
Cinesinas/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Estresse Oxidativo/genética , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , Mutação Puntual/genética , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
3.
J Nanobiotechnology ; 20(1): 511, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463195

RESUMO

Inherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.


Assuntos
Nanopartículas , Doenças Retinianas , Humanos , Sistemas CRISPR-Cas/genética , Estudos Prospectivos , Doenças Retinianas/genética , Doenças Retinianas/terapia , Retina , Terapia Genética
4.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077104

RESUMO

Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.


Assuntos
Síndrome de Bardet-Biedl , Neuromielite Óptica , Animais , Cerebelo , Comorbidade , Patologia Molecular
5.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008490

RESUMO

Lung cancer is the leading cause of death from cancer in Taiwan and throughout the world. Immunotherapy has revealed promising and significant efficacy in NSCLC, through immune checkpoint inhibition by blocking programmed cell death protein (PD)-1/PD-1 ligand (PD-L1) signaling pathway to restore patients' T-cell immunity. One novel type of long, non-coding RNAs, circular RNAs (circRNAs), are endogenous, stable, and widely expressed in tissues, saliva, blood, urine, and exosomes. Our previous results revealed that the plasma level of hsa_circ_0000190 can be monitored by liquid-biopsy-based droplet digital PCR and may serve as a valuable blood-based biomarker to monitor the disease progression and the efficacy of immunotherapy. In this study, hsa_circ_0000190 was shown to increase the PD-L1 mRNA-mediated soluble PD-L1 (sPD-L1) expression, consequently interfering with the efficacy of anti-PD-L1 antibody and T-cell activation, which may result in immunotherapy resistance and poor outcome. Our results unraveled that hsa_circ_0000190 facilitated the tumorigenesis and immune evasion of NSCLC by upregulating sPD-L1 expression, potentially developing a different aspect in elucidating the molecular immunopathogenesis of NSCLC. Hsa_circ_0000190 upregulation can be an effective indicator for the progression of NSCLC, and hsa_circ_0000190 downregulation may possess a potential therapeutic value for the treatment of NSCLC in combination with immunotherapy.


Assuntos
Antígeno B7-H1/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Evasão da Resposta Imune/genética , Neoplasias Pulmonares/genética , RNA Circular/genética , Regulação para Cima/genética , Células A549 , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Linfócitos T/fisiologia , Taiwan
6.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638933

RESUMO

Lung cancer is the leading cause of cancer-related mortality worldwide, and its tumorigenesis involves the accumulation of genetic and epigenetic events in the respiratory epithelium. Epigenetic modifications, such as DNA methylation, RNA modification, and histone modifications, have been widely reported to play an important role in lung cancer development and in other pulmonary diseases. Whereas the functionality of DNA and chromatin modifications referred to as epigenetics is widely characterized, various modifications of RNA nucleotides have recently come into prominence as functionally important. N6-methyladosine (m6A) is the most prevalent internal modification in mRNAs, and its machinery of writers, erasers, and readers is well-characterized. However, several other nucleotide modifications of mRNAs and various noncoding RNAs have also been shown to play an important role in the regulation of biological processes and pathology. Such epitranscriptomic modifications play an important role in regulating various aspects of RNA metabolism, including transcription, translation, splicing, and stability. The dysregulation of epitranscriptomic machinery has been implicated in the pathological processes associated with carcinogenesis including uncontrolled cell proliferation, migration, invasion, and epithelial-mesenchymal transition. In recent years, with the advancement of RNA sequencing technology, high-resolution maps of different modifications in various tissues, organs, or disease models are being constantly reported at a dramatic speed. This facilitates further understanding of the relationship between disease development and epitranscriptomics, shedding light on new therapeutic possibilities. In this review, we summarize the basic information on RNA modifications, including m6A, m1A, m5C, m7G, pseudouridine, and A-to-I editing. We then demonstrate their relation to different kinds of lung diseases, especially lung cancer. By comparing the different roles RNA modifications play in the development processes of different diseases, this review may provide some new insights and offer a better understanding of RNA epigenetics and its involvement in pulmonary diseases.


Assuntos
Epigênese Genética , Pneumopatias/genética , Neoplasias Pulmonares/genética , Processamento Pós-Transcricional do RNA , RNA/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Humanos , Pneumopatias/metabolismo , Neoplasias Pulmonares/metabolismo , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926102

RESUMO

Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye's accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs.


Assuntos
Amaurose Congênita de Leber/genética , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Dependovirus/genética , Proteínas do Olho/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Humanos , Amaurose Congênita de Leber/terapia , Mutação , RNA , Retina/efeitos dos fármacos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo
8.
Cancer Cell Int ; 20(1): 597, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317545

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most lethal brain tumor characterized by high morbidity and limited treatment options. Tumor malignancy is usually associated with the epigenetic marks, which coordinate gene expression to ascertain relevant phenotypes. One of such marks is m6A modification of RNA, whose functional effects are dependent on the YTH family m6A reader proteins. METHODS AND RESULTS: In this study, we investigated the expression of five YTH family proteins in different GBM microarray datasets from the Oncomine database, and identified YTHDF1 as the most highly overexpressed member of this family in GBM. By performing the knockdown of YTHDF1 in a GBM cell line, we found that it positively regulates proliferation, chemoresistance and cancer stem cell-like properties. Musashi-1 (MSI1) is a postranscriptional gene expression regulator associated with high oncogenicity in GBM. By knocking down and overexpressing MSI1, we found that it positively regulates YTHDF1 expression. The inhibitory effects imposed on the processes of proliferation and migration by YTHDF1 knockdown were shown to be partially rescued by concomitant overexpression of MSI1. MSI1 and YTHDF1 were shown to be positively correlated in clinical glioma samples, and their concomitant upregulation was associated with decreased survival of glioma patients. We identified the direct regulation of YTHDF1 by MSI1. CONCLUSIONS: Given the fact that both proteins are master regulators of gene expression, and both of them are unfavorable factors in GBM, we suggest that in any future studies aimed to uncover the prognostic value and therapy potential, these two proteins should be considered together.

9.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339321

RESUMO

Neuromuscular diseases (NMDs) belong to a class of functional impairments that cause dysfunctions of the motor neuron-muscle functional axis components. Inherited monogenic neuromuscular disorders encompass both muscular dystrophies and motor neuron diseases. Understanding of their causative genetic defects and pathological genetic mechanisms has led to the unprecedented clinical translation of genetic therapies. Challenged by a broad range of gene defect types, researchers have developed different approaches to tackle mutations by hijacking the cellular gene expression machinery to minimize the mutational damage and produce the functional target proteins. Such manipulations may be directed to any point of the gene expression axis, such as classical gene augmentation, modulating premature termination codon ribosomal bypass, splicing modification of pre-mRNA, etc. With the soar of the CRISPR-based gene editing systems, researchers now gravitate toward genome surgery in tackling NMDs by directly correcting the mutational defects at the genome level and expanding the scope of targetable NMDs. In this article, we will review the current development of gene therapy and focus on NMDs that are available in published reports, including Duchenne Muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked myotubular myopathy (XLMTM), Spinal Muscular Atrophy (SMA), and Limb-girdle muscular dystrophy Type 2C (LGMD2C).


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Doenças Neuromusculares/genética , Animais , Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto , Humanos , Doenças Neuromusculares/terapia
10.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290293

RESUMO

The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) in Wuhan, China, which rapidly grew into a global pandemic, marked the third introduction of a virulent coronavirus into the human society, affecting not only the healthcare system, but also the global economy. Although our understanding of coronaviruses has undergone a huge leap after two precedents, the effective approaches to treatment and epidemiological control are still lacking. In this article, we present a succinct overview of the epidemiology, clinical features, and molecular characteristics of SARS-CoV-2. We summarize the current epidemiological and clinical data from the initial Wuhan studies, and emphasize several features of SARS-CoV-2, which differentiate it from SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), such as high variability of disease presentation. We systematize the current clinical trials that have been rapidly initiated after the outbreak of COVID-19 pandemic. Whereas the trials on SARS-CoV-2 genome-based specific vaccines and therapeutic antibodies are currently being tested, this solution is more long-term, as they require thorough testing of their safety. On the other hand, the repurposing of the existing therapeutic agents previously designed for other virus infections and pathologies happens to be the only practical approach as a rapid response measure to the emergent pandemic, as most of these agents have already been tested for their safety. These agents can be divided into two broad categories, those that can directly target the virus replication cycle, and those based on immunotherapy approaches either aimed to boost innate antiviral immune responses or alleviate damage induced by dysregulated inflammatory responses. The initial clinical studies revealed the promising therapeutic potential of several of such drugs, including favipiravir, a broad-spectrum antiviral drug that interferes with the viral replication, and hydroxychloroquine, the repurposed antimalarial drug that interferes with the virus endosomal entry pathway. We speculate that the current pandemic emergency will be a trigger for more systematic drug repurposing design approaches based on big data analysis.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus , Fatores Imunológicos/uso terapêutico , Pandemias , Pneumonia Viral , Vacinas Virais , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/imunologia , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Imunização Passiva , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Pneumonia Viral/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Soroterapia para COVID-19
11.
Exp Cell Res ; 363(2): 299-309, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29366807

RESUMO

Leber's hereditary optic neuropathy (LHON) is the maternally inherited mitochondrial disease caused by homoplasmic mutations in mitochondrial electron transport chain Complex I subunit genes. The mechanism of its incomplete penetrance is still largely unclear. In this study, we created the patient-specific human induced pluripotent stem cells (hiPSCs) from MT-ND4 mutated LHON-affected patient, asymptomatic mutation carrier and healthy control, and differentiated them into retinal ganglion cells (RGCs). We found the defective neurite outgrowth in affected RGCs, but not in the carrier RGCs which had significant expression of SNCG gene. We observed enhanced mitochondrial biogenesis in affected and carrier derived RGCs. Surprisingly, we observed increased NADH dehydrogenase enzymatic activity of Complex I in hiPSC-derived RGCs of asymptomatic carrier, but not of the affected patient. LHON mutation substantially decreased basal respiration in both affected and unaffected carrier hiPSCs, and had the same effect on spare respiratory capacity, which ensures normal function of mitochondria in conditions of increased energy demand or environmental stress. The expression of antioxidant enzyme catalase was decreased in affected and carrier patient hiPSC-derived RGCs as compared to the healthy control, which might indicate to higher oxidative stress-enriched environment in the LHON-specific RGCs. Microarray profiling demonstrated enhanced expression of cell cycle machinery and downregulation of neuronal specific genes.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Diferenciação Celular/fisiologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
12.
Int J Mol Sci ; 20(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634448

RESUMO

Age-related macular degeneration (AMD) is the eye disease with the highest epidemic incidence, and has great impact on the aged population. Wet-type AMD commonly has the feature of neovascularization, which destroys the normal retinal structure and visual function. So far, effective therapy options for rescuing visual function in advanced AMD patients are highly limited, especially in wet-type AMD, in which the retinal pigmented epithelium and Bruch's membrane structure (RPE-BM) are destroyed by abnormal angiogenesis. Anti-VEGF treatment is an effective remedy for the latter type of AMD; however, it is not a curative therapy. Therefore, reconstruction of the complex structure of RPE-BM and controlled release of angiogenesis inhibitors are strongly required for sustained therapy. The major purpose of this study was to develop a dual function biomimetic material, which could mimic the RPE-BM structure and ensure slow release of angiogenesis inhibitor as a novel therapeutic strategy for wet AMD. We herein utilized plasma-modified polydimethylsiloxane (PDMS) sheet to create a biomimetic scaffold mimicking subretinal BM. This dual-surface biomimetic scaffold was coated with laminin and dexamethasone-loaded liposomes. The top surface of PDMS was covalently grafted with laminin and used for cultivation of the retinal pigment epithelial cells differentiated from human induced pluripotent stem cells (hiPSC-RPE). To reach the objective of inhibiting angiogenesis required for treatment of wet AMD, the bottom surface of modified PDMS membrane was further loaded with dexamethasone-containing liposomes via biotin-streptavidin linkage. We demonstrated that hiPSC-RPE cells could proliferate, express normal RPE-specific genes and maintain their phenotype on laminin-coated PDMS membrane, including phagocytosis ability, and secretion of anti-angiogenesis factor PEDF. By using in vitro HUVEC angiogenesis assay, we showed that application of our membrane could suppress oxidative stress-induced angiogenesis, which was manifested in decreased secretion of VEGF by RPE cells and suppression of vascularization. In conclusion, we propose modified biomimetic material for dual delivery of RPE cells and liposome-enveloped dexamethasone, which can be potentially applied for AMD therapy.


Assuntos
Dexametasona/administração & dosagem , Dimetilpolisiloxanos , Células Epiteliais/metabolismo , Lipossomos , Neovascularização Fisiológica/efeitos dos fármacos , Nylons , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Biotina/química , Biotina/metabolismo , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/química , Laminina/metabolismo , Lipossomos/química , Degeneração Macular/terapia , Nylons/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Int J Mol Sci ; 20(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151170

RESUMO

Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases. The organic photovoltaic materials such as poly-3-hexylthiophene (P3HT) can generate electric current upon illumination with light of the visible spectrum, and possesses several advantageous properties, including light weight, flexibility and high biocompatibility, which makes them a highly promising tool for electric stimulation of cells in vitro and in vivo. In this study, we tested the ability to generate photocurrent by several formulations of blend (bulk heterojunction) of P3HT (which is electron donor material) with several electron acceptor materials, including Alq3 and bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). We found that the photovoltaic device based on bulk heterojunction of P3HT with Bebq2 could generate photocurrent when illuminated by both green laser and visible spectrum light. We tested the growth and differentiation capacity of human induced pluripotent stem cells (hiPSC)-derived RGCs when grown in interface with such photostimulated device, and found that they were significantly increased. The application of P3HT:Bebq2-formulation of photovoltaic device has a great potential for developments in retinal transplantation, nerve repair and tissue engineering approaches of treatment of retinal degeneration.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Compostos Organosselênicos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Imunofluorescência , Humanos , Compostos Organosselênicos/química , Polímeros , Esferoides Celulares
14.
BMC Genomics ; 17(Suppl 13): 1028, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155669

RESUMO

BACKGROUND: RNA is often targeted to be localized to the specific subcellular compartments. Specific localization of mRNA is believed to be an important mechanism for targeting their protein products to the locations, where their function is required. RESULTS: In this study we performed the genome wide transcriptome analysis of peroxisome preparations from the mouse liver using microarrays. We demonstrate that RNA is absent inside peroxisomes, however it is associated at their exterior via the noncovalent contacts with the membrane proteins. We detect enrichment of specific sets of transcripts in two preparations of peroxisomes, purified with different degrees of stringency. Importantly, among these were mRNAs encoding bona fide peroxisomal proteins, such as peroxins and peroxisomal matrix enzymes involved in beta-oxidation of fatty acids and bile acid biosynthesis. The top-most enriched mRNA, whose association with peroxisomes we confirm microscopically was Hmgcs1, encoding 3-hydroxy-3-methylglutaryl-CoA synthase, a crucial enzyme of cholesterol biosynthesis pathway. We observed significant representation of mRNAs encoding mitochondrial and secreted proteins in the peroxisomal fractions. CONCLUSIONS: This is a pioneer genome-wide study of localization of mRNAs to peroxisomes that provides foundation for more detailed dissection of mechanisms of RNA targeting to subcellular compartments.


Assuntos
Estudo de Associação Genômica Ampla , Peroxissomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Perfilação da Expressão Gênica , Espaço Intracelular , Espectrometria de Massas , Camundongos , Transporte de RNA , Transcriptoma
15.
BMC Genomics ; 15 Suppl 9: S7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522241

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. RESULTS: We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. CONCLUSIONS: Our findings greatly extend the number of noncoding RNAs functionally implicated in tumor development and patient treatment and highlight their role as potential prognostic biomarkers of neuroblastomas.


Assuntos
Biomarcadores Tumorais/genética , Progressão da Doença , Perfilação da Expressão Gênica , Família Multigênica/genética , Neuroblastoma/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Humanos , Anotação de Sequência Molecular , Neuroblastoma/diagnóstico , Neuroblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
16.
Virus Res ; 345: 199391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754785

RESUMO

Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.


Assuntos
Células Epiteliais Alveolares , Células-Tronco Pluripotentes Induzidas , Neutrófilos , Humanos , Neutrófilos/imunologia , Neutrófilos/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Células Epiteliais Alveolares/virologia , COVID-19/virologia , COVID-19/imunologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Interleucina-8/genética , Interleucina-8/metabolismo
17.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672144

RESUMO

Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Humanos , Inteligência Artificial , Epitélio Pigmentado da Retina , Diferenciação Celular
18.
J Adv Res ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328058

RESUMO

INTRODUCTION: Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is related to the pathogenesis of various retinopathies including age-related macular degeneration (AMD). Oxidative stress is the major factor that induces degeneration of RPE cells associated with the etiology of AMD. OBJECTIVES: Sodium iodate (NaIO3) generates intracellular reactive oxygen species (ROS) and is widely used to establish a model of AMD due to the selective induction of retinal degeneration. This study was performed to clarify the effects of multiple NaIO3-stimulated signaling pathways on EMT in RPE cells. METHODS: The EMT characteristics in NaIO3-treated human ARPE-19 cells and RPE cells of the mouse eyes were analyzed. Multiple oxidative stress-induced modulators were investigated and the effects of pre-treatment with Ca2+ chelator, extracellular signal-related kinase (ERK) inhibitor, or epidermal growth factor receptor (EGFR) inhibitor on NaIO3-induced EMT were determined. The efficacy of post-treatment with ERK inhibitor on the regulation of NaIO3-induced signaling pathways was dissected and its role in retinal thickness and morphology was evaluated by using histological cross-sections and spectral domain optical coherence tomography. RESULTS: We found that NaIO3 induced EMT in ARPE-19 cells and in RPE cells of the mouse eyes. The intracellular ROS, Ca2+, endoplasmic reticulum (ER) stress marker, phospho-ERK, and phospho-EGFR were increased in NaIO3-stimulated cells. Our results showed that pre-treatment with Ca2+ chelator, ERK inhibitor, or EGFR inhibitor decreased NaIO3-induced EMT, interestingly, the inhibition of ERK displayed the most prominent effect. Furthermore, post-treatment with FR180204, a specific ERK inhibitor, reduced intracellular ROS and Ca2+ levels, downregulated phospho-EGFR and ER stress marker, attenuated EMT of RPE cells, and prevented structural disorder of the retina induced by NaIO3. CONCLUSIONS: ERK is a crucial regulator of multiple NaIO3-induced signaling pathways that coordinate EMT program in RPE cells. Inhibition of ERK may be a potential therapeutic strategy for the treatment of AMD.

19.
Stem Cell Res ; 60: 102683, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091309

RESUMO

Cystic fibrosis (CF) is a genetic disease affects CFTR channel synthesis. While 90 percent of the CF patients now benefit from small molecule target therapies, this treatment has yet to extend to those bearing nonsense mutations. Studies of these rare mutations using cell lines with native pathological signatures of the disease may lead to breakthroughs in therapeutic development. Here, we report the generation of CF patient-derived induced pluripotent stem cells (iPSCs) carrying a nonsense mutation at position 308 (S308X). The pluripotency and genomic profile of the iPSC line was validated as a resource that can enable future research for CF.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Códon sem Sentido/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética
20.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205610

RESUMO

Circular RNAs (circRNAs) are noncoding products of backsplicing of pre-mRNAs which have been established to possess potent biological functions. Dysregulated circRNA expression has been linked to diseases including different types of cancer. Cancer progression is known to result from the dysregulation of several molecular mechanisms responsible for the maintenance of cellular and tissue homeostasis. The dysregulation of these processes is defined as cancer hallmarks, and the molecular pathways implicated in them are regarded as the targets of therapeutic interference. In this review, we summarize the literature on the investigation of circRNAs implicated in cancer hallmark molecular signaling. First, we present general information on the properties of circRNAs, such as their biogenesis and degradation mechanisms, as well as their basic molecular functions. Subsequently, we summarize the roles of circRNAs in the framework of each cancer hallmark and finally discuss the potential as therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA