RESUMO
Recent evidence indicates that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates expression of target genes and is directly involved in tumor formation in a telomere-independent manner. Non-canonical function of hTERT has been considered as a therapeutic target for cancer therapy. We have previously shown that hTERT phosphorylation at threonine 249 (p-hTERT), which promotes RdRP activity, is an indicator of an aggressive phenotype and poor prognosis in liver and pancreatic cancers, using two cohorts with small sample sizes with polyclonal p-hTERT antibody. To clarify the clinical relevance of p-hTERT, we developed a specific monoclonal antibody and determined the diagnostic and prognostic value of p-hTERT in cancer specimens using a large cohort. A monoclonal antibody for phosphorylated hTERT (p-hTERT) at threonine 249 was developed and validated. The antibody was used for the immunohistochemical staining of formalin-fixed, paraffin-embedded specimens from 1523 cases of lung, colon, stomach, pancreatic, liver, breast, and kidney cancers. We detected elevated p-hTERT expression levels in cases with a high mitotic activity, high pathological grade, and high nuclear pleomorphism. Elevated p-hTERT expression was an independent prognostic factor for lung, pancreatic, and liver cancers. Furthermore, p-hTERT expression was associated with immature and aggressive features, such as adenosquamous carcinoma (lung and pancreas), invasive type of cancer (lung), high serum alpha-fetoprotein level (liver), and triple-negative status (breast). In conclusion, RdRP activity indicated by p-hTERT expression predicts aggressive cancer phenotypes in various types of cancer. Thus, p-hTERT is a novel biomarker for the diagnosis of aggressive cancers with a poor prognosis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias , Telomerase , Anticorpos Monoclonais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Prognóstico , RNA Polimerase Dependente de RNA , Telomerase/genética , Treonina/metabolismoRESUMO
Meningioma is the most common intracranial tumor, with generally favorable patient prognosis. However, patients with malignant meningioma typically experience recurrence, undergo multiple surgical resections, and ultimately have a poor prognosis. Thus far, effective chemotherapy for malignant meningiomas has not been established. We recently reported the efficacy of eribulin (Halaven) for glioblastoma with a telomerase reverse transcriptase (TERT) promoter mutation. This study investigated the anti-tumor effect of eribulin against TERT promoter mutation-harboring human malignant meningioma cell lines in vitro and in vivo. Two meningioma cell lines, IOMM-Lee and HKBMM, were used in this study. The strong inhibition of cell proliferation by eribulin via cell cycle arrest was demonstrated through viability assay and flow cytometry. Apoptotic cell death in malignant meningioma cell lines was determined through vital dye assay and immunoblotting. Moreover, a wound healing assay revealed the suppression of tumor cell migration after eribulin exposure. Intraperitoneal administration of eribulin significantly prolonged the survival of orthotopic xenograft mouse models of both malignant meningioma cell lines implanted in the subdural space (P < .0001). Immunohistochemistry confirmed apoptosis in brain tumor tissue treated with eribulin. Overall, these results suggest that eribulin is a potential therapeutic agent for malignant meningiomas.
Assuntos
Antineoplásicos/uso terapêutico , Furanos/uso terapêutico , Cetonas/uso terapêutico , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Furanos/farmacologia , Humanos , Estimativa de Kaplan-Meier , Cetonas/farmacologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/mortalidade , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/mortalidade , Meningioma/patologia , Camundongos , Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has driven a global pandemic with catastrophic consequences. The rapid development of promising therapeutic strategies against COVID-19 is keenly anticipated. Family Coronaviridae comprises positive, single-stranded RNA viruses that use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. As the RdRP of viruses in this family and others plays a pivotal role in infection, it is a promising therapeutic target for developing antiviral agents against them. A critical genetic driver for many cancers is the catalytic subunit of telomerase: human telomerase reverse transcriptase (hTERT), identified initially as an RNA-dependent DNA polymerase. However, even though hTERT is a DNA polymerase, it has phylogenetic and structural similarities to viral RdRPs. Researchers worldwide, including the authors of this review, are engaged in developing therapeutic strategies targeting hTERT. We have published a series of papers reporting that hTERT has RdRP activity and that this RdRP activity in hTERT is essential for tumor formation. Here, we review the enzymatic function of RdRP in virus proliferation and tumor development, reminding us of how the study of the novel coronavirus has brought us to the unexpected intersection of cancer research and RNA virus research.
Assuntos
COVID-19/virologia , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/fisiologia , Telomerase/metabolismo , Proteínas Virais/metabolismo , Animais , COVID-19/enzimologia , Carcinogênese/metabolismo , Humanos , Replicação Viral/fisiologiaRESUMO
Telomeres maintain the integrity of chromosome ends and telomere length is an important marker of aging. The epidemiological studies suggested that many types of stress including psychosocial stress decrease telomere length. However, it remains unknown how various stresses induce telomere shortening. Here, we report that the stress-responsive transcription factor ATF7 mediates TNF-α-induced telomere shortening. ATF7 and telomerase, an enzyme that elongates telomeres, are localized on telomeres via interactions with the Ku complex. In response to TNF-α, which is induced by various stresses including psychological stress, ATF7 was phosphorylated by p38, leading to the release of ATF7 and telomerase from telomeres. Thus, a decrease of ATF7 and telomerase on telomeres in response to stress causes telomere shortening, as observed in ATF7-deficient mice. These findings give credence to the idea that various types of stress might shorten telomere.
Assuntos
Fatores Ativadores da Transcrição/fisiologia , Encurtamento do Telômero , Fator de Necrose Tumoral alfa/fisiologia , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Fibroblastos , Células HeLa , Histonas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Telomerase/metabolismo , Telômero/metabolismoRESUMO
Glioblastoma is one of the most devastating human malignancies for which a novel efficient treatment is urgently required. This pre-clinical study shows that eribulin, a specific inhibitor of telomerase reverse transcriptase (TERT)-RNA-dependent RNA polymerase, is an effective anticancer agent against glioblastoma. Eribulin inhibited the growth of 4 TERT promoter mutation-harboring glioblastoma cell lines in vitro at subnanomolar concentrations. In addition, it suppressed the growth of glioblastoma cells transplanted subcutaneously or intracerebrally into mice, and significantly prolonged the survival of mice harboring brain tumors at a clinically equivalent dose. A pharmacokinetics study showed that eribulin quickly penetrated brain tumors and remained at a high concentration even when it was washed away from plasma, kidney or liver 24 hours after intravenous injection. Moreover, a matrix-assisted laser desorption/ionization mass spectrometry imaging analysis revealed that intraperitoneally injected eribulin penetrated the brain tumor and was distributed evenly within the tumor mass at 1 hour after the injection whereas only very low levels of eribulin were detected in surrounding normal brain. Eribulin is an FDA-approved drug for refractory breast cancer and can be safely repositioned for treatment of glioblastoma patients. Thus, our results suggest that eribulin may serve as a novel therapeutic option for glioblastoma. Based on these data, an investigator-initiated registration-directed clinical trial to evaluate the safety and efficacy of eribulin in patients with recurrent GBM (UMIN000030359) has been initiated.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Furanos/administração & dosagem , Glioblastoma/tratamento farmacológico , Cetonas/administração & dosagem , Regiões Promotoras Genéticas/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Feminino , Furanos/farmacologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Injeções Intraperitoneais , Cetonas/farmacologia , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Telomerase/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (RMRP), a gene that is mutated in the inherited pleiotropic syndrome cartilage-hair hypoplasia. Human TERT and RMRP form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with RMRP.
Assuntos
Endorribonucleases/genética , RNA não Traduzido/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Telomerase/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Longo não Codificante , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética , Ribonuclease III/deficiência , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonucleoproteínas/genética , Telomerase/genéticaRESUMO
MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s).
Assuntos
MicroRNAs/metabolismo , Telomerase/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação para Baixo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Recent work has identified a subset of cells resident in tumors that exhibit properties similar to those found in normal stem cells. Such cells are highly tumorigenic and may be involved in resistance to treatment. However, the genes that regulate the tumor initiating cell (TIC) state are unknown. Here, we show that overexpression of either of the nucleolar GTP-binding proteins nucleostemin (NS) or GNL3L drives the fraction of genetically defined tumor cells that exhibit markers and tumorigenic properties of TICs. Specifically, cells that constitutively express elevated levels of NS or GNL3L exhibit increased TWIST expression, phosphorylation of STAT3, expression of genes that induce pluripotent stem cells, and enhanced radioresistance; in addition, they form tumors even when small numbers of cells are implanted and exhibit an increased propensity to metastasize. GNL3L/NS forms a complex with the telomerase catalytic subunit [human telomerase reverse transcriptase (hTERT)] and the SWItch-Sucrose NonFermentable (SWI-SNF) complex protein brahma-related gene 1 (BRG1), and the expression of each of these components is necessary to facilitate the cancer stem cell state. Together, these observations define a complex composed of TERT, BRG1, and NS/GNL3L that maintains the function of TICs.
Assuntos
Proteínas de Transporte/química , Proteínas de Ligação ao GTP/química , Neoplasias/metabolismo , Proteínas Nucleares/química , Animais , Nucléolo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA , Fator de Transcrição STAT3/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/metabolismoRESUMO
As aberrant accumulation of RNA-DNA hybrids (R-loops) causes DNA damage and genome instability, cells express regulators of R-loop structures. Here we report that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates R-loop formation. We found that the phosphorylated form of hTERT (p-hTERT) exhibits RdRP activity in nuclear speckles both in telomerase-positive cells and telomerase-negative cells with alternative lengthening of telomeres (ALT) activity. The p-hTERT did not associate with telomerase RNA component in nuclear speckles but, instead, with TERRA RNAs to resolve R-loops. Targeting of the TERT gene in ALT cells ablated RdRP activity and impaired tumour growth. Using a genome-scale CRISPR loss-of-function screen, we identified Fanconi anaemia/BRCA genes as synthetic lethal partners of hTERT RdRP. Inactivation of RdRP and Fanconi anaemia/BRCA genes caused accumulation of R-loop structures and DNA damage. These findings indicate that RdRP activity of p-hTERT guards against genome instability by removing R-loop structures.
Assuntos
Dano ao DNA , Instabilidade Genômica , Estruturas R-Loop , Telomerase , Homeostase do Telômero , Telomerase/genética , Telomerase/metabolismo , Humanos , Fosforilação , Instabilidade Genômica/genética , Estruturas R-Loop/genética , RNA/metabolismo , RNA/genética , Animais , Células HEK293 , Telômero/metabolismo , Telômero/genética , Linhagem Celular TumoralRESUMO
The telomerase reverse transcriptase is upregulated in the majority of human cancers and contributes directly to cell transformation. Here we report that hTERT is phosphorylated at threonine 249 during mitosis by the serine/threonine kinase CDK1. Clinicopathological analyses reveal that phosphorylation of hTERT at threonine 249 occurs more frequently in aggressive cancers. Using CRISPR/Cas9 genome editing, we introduce substitution mutations at threonine 249 in the endogenous hTERT locus and find that phosphorylation of threonine 249 is necessary for hTERT-mediated RNA dependent RNA polymerase (RdRP) activity but dispensable for reverse transcriptase and terminal transferase activities. Cap Analysis of Gene Expression (CAGE) demonstrates that hTERT phosphorylation at 249 regulates the expression of specific genes that are necessary for cancer cell proliferation and tumor formation. These observations indicate that phosphorylation at threonine 249 regulates hTERT RdRP and contributes to cancer progression in a telomere independent manner.
Assuntos
Proteína Quinase CDC2/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Telomerase/metabolismo , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Camundongos , Mitose , Mutação , Neoplasias/genética , Fosforilação , RNA Polimerase Dependente de RNA/metabolismo , Telomerase/genética , TreoninaRESUMO
Human telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, and it elongates telomere through RNA-dependent DNA polymerase activity. Although TERT is named as a reverse transcriptase, structural and phylogenetic analyses of TERT demonstrate that TERT is a member of right-handed polymerases, and relates to viral RNA-dependent RNA polymerases (RdRPs) as well as viral reverse transcriptase. We firstly identified RdRP activity of human TERT that generates complementary RNA stand to a template non-coding RNA and contributes to RNA silencing in cancer cells. To analyze this non-canonical enzymatic activity, we developed RdRP assay with recombinant TERT in 2009, thereafter established in vitro RdRP assay for endogenous TERT. In this manuscript, we describe the latter method. Briefly, TERT immune complexes are isolated from cells, and incubated with template RNA and rNTPs including radioactive rNTP for RdRP reaction. To eliminate single-stranded RNA, reaction products are treated with RNase I, and the final products are analyzed with polyacrylamide gel electrophoresis. Radiolabeled RdRP products can be detected by autoradiography after overnight exposure.
Assuntos
RNA/genética , Telomerase/metabolismo , Telômero/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Humanos , Telomerase/genéticaRESUMO
RNA-dependent RNA polymerase (RdRP) plays key roles in RNA silencing to generate double-stranded RNAs. In model organisms, such as Caenorhabditis elegans and Neurospora crassa, two types of small interfering RNAs (siRNAs), primary siRNAs and secondary siRNAs, are expressed; RdRP produces secondary siRNAs de novo, without using either Dicer or primers, while primary siRNAs are processed by Dicer. We reported that human telomerase reverse transcriptase (TERT) has RdRP activity and produces endogenous siRNAs in a Dicer-dependent manner. However, de novo synthesis of siRNAs by human TERT has not been elucidated. Here we show that the TERT RdRP generates short RNAs that are complementary to template RNAs and have 5'-triphosphorylated ends, which indicates de novo synthesis of the RNAs. In addition, we confirmed short RNA synthesis by TERT in several human carcinoma cell lines and found that TERT protein levels are positively correlated with RdRP activity.
Assuntos
RNA Polimerase Dependente de RNA/metabolismo , RNA/metabolismo , Telomerase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Humanos , RNA/análise , RNA Polimerase Dependente de RNA/análise , Telomerase/análiseRESUMO
Human telomerase reverse transcriptase, hTERT, is the catalytic component of human telomerase. Expression of hTERT confers telomerase activity, indicating that hTERT is the rate-limiting component of human telomerase. Here we report the detection of anti-hTERT auto-antibodies in the sera derived patients with hepatocellular carcinoma using recombinant, purified hTERT as an antigen in an enzyme linked immunosorbent assay (ELISA). The levels of anti-hTERT antibodies in serum correlated with progression to hepatocellular carcinoma. In contrast, we detected only low levels of anti-hTERT auto-antibodies in the sera derived from 18 normal volunteers. The observation of hTERT auto-antibodies in the sera derived from cancer patients suggests that such auto-antibodies constitute novel and specific tumor marker.
Assuntos
Autoanticorpos/sangue , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Telomerase/sangue , Telomerase/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/enzimologia , Proteínas de Ligação a DNA , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Hepatite Crônica/sangue , Hepatite Crônica/enzimologia , Hepatite Crônica/imunologia , Humanos , Soros Imunes , Cirrose Hepática/sangue , Cirrose Hepática/enzimologia , Cirrose Hepática/imunologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/enzimologia , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Valores de Referência , Telomerase/genéticaRESUMO
RNA polymerase II (RNAPII) subunit 5 (RPB5) is positioned close to DNA downstream of the initiation site and is the site of interaction with several regulators. Hepatitis B virus X protein (HBx) binds the central part of RPB5 to modulate activated transcription, and TFIIF subunit RAP30 interacts with the same part of RPB5 that is critical for the association between TFIIF and RNAPII. However the residues necessary for these interactions remain unknown. Here we report systematic mutagenesis of the central part of RPB5 using two-step alanine scanning libraries to pinpoint critical residues for its binding to RAP30 in the TFIIF complex and/or to HBx, and identified these residues in both mammalian cells and in an in vitro binding assay. Four residues, F76, I104, T111 and S113, are critical for both TFIIF- and HBx-binding, indicating the overlapping nature of the sites of interaction. In addition, V74 and N98 are required for HBx-binding, and T56 and L58 are needed for RAP30-binding. Interestingly the residues exposed to solvent, T111 and S113, are very close to the DNA, implying that two factors may modulate the interaction between DNA and RPB5.
Assuntos
Análise Mutacional de DNA , Subunidades Proteicas , RNA Polimerase II , Transativadores/metabolismo , Fatores de Transcrição TFII/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição TFII/genética , Proteínas Virais Reguladoras e AcessóriasRESUMO
Treatment of advanced ovarian cancer involves platinum-based chemotherapy. However, chemoresistance is a major obstacle. Cancer stem cells (CSCs) are thought to be one of the causes of chemoresistance, but the underlying mechanism remains elusive. Recently, human telomerase reverse transcriptase (hTERT) has been reported to promote CSC-like traits. In this study, we found that a mitotic inhibitor, eribulin mesylate (eribulin), effectively inhibited growth of platinum-resistant ovarian cancer cell lines. Eribulin-sensitive cells showed a higher efficiency for sphere formation, suggesting that these cells possess an enhanced CSC-like phenotype. Moreover, these cells expressed a higher level of hTERT, and suppression of hTERT expression by siRNA resulted in decreased sensitivity to eribulin, suggesting that hTERT may be a target for eribulin. Indeed, we found that eribulin directly inhibited RNA-dependent RNA polymerase (RdRP) activity, but not telomerase activity of hTERT in vitro. We propose that eribulin targets the RdRP activity of hTERT and may be an effective therapeutic option for CSCs. Furthermore, hTERT may be a useful biomarker to predict clinical responses to eribulin.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Cetonas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Transcrição Reversa/efeitos dos fármacos , Telomerase/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Esferoides Celulares/enzimologiaRESUMO
In the fission yeast Schizosaccharomyces pombe, centromeric heterochromatin is maintained by an RNA-directed RNA polymerase complex (RDRC) and the RNA-induced transcriptional silencing (RITS) complex in a manner that depends on the generation of short interfering RNA. In association with the telomerase RNA component (TERC), the telomerase reverse transcriptase (TERT) forms telomerase and counteracts telomere attrition, and without TERC, TERT has been implicated in the regulation of heterochromatin at locations distinct from telomeres. Here, we describe a complex composed of human TERT (hTERT), Brahma-related gene 1 (BRG1), and nucleostemin (NS) that contributes to heterochromatin maintenance at centromeres and transposons. This complex produced double-stranded RNAs homologous to centromeric alpha-satellite (alphoid) repeat elements and transposons that were processed into small interfering RNAs targeted to these heterochromatic regions. These small interfering RNAs promoted heterochromatin assembly and mitotic progression in a manner dependent on the RNA interference machinery. These observations implicate the hTERT/BRG1/NS (TBN) complex in heterochromatin assembly at particular sites in the mammalian genome.