Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(3): 465-475, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38408751

RESUMO

To modernize genotoxicity assessment and reduce reliance on experimental animals, new approach methodologies (NAMs) that provide human-relevant dose-response data are needed. Two transcriptomic biomarkers, GENOMARK and TGx-DDI, have shown a high classification accuracy for genotoxicity. As these biomarkers were extracted from different training sets, we investigated whether combining the two biomarkers in a human-derived metabolically competent cell line (i.e., HepaRG) provides complementary information for the classification of genotoxic hazard identification and potency ranking. First, the applicability of GENOMARK to TempO-Seq, a high-throughput transcriptomic technology, was evaluated. HepaRG cells were exposed for 72 h to increasing concentrations of 10 chemicals (i.e., eight known in vivo genotoxicants and two in vivo nongenotoxicants). Gene expression data were generated using the TempO-Seq technology. We found a prediction performance of 100%, confirming the applicability of GENOMARK to TempO-Seq. Classification using TGx-DDI was then compared to GENOMARK. For the chemicals identified as genotoxic, benchmark concentration modeling was conducted to perform potency ranking. The high concordance observed for both hazard classification and potency ranking by GENOMARK and TGx-DDI highlights the value of integrating these NAMs in a weight of evidence evaluation of genotoxicity.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Humanos , Perfilação da Expressão Gênica/métodos , Biomarcadores , Linhagem Celular , Dano ao DNA
2.
Toxicol Sci ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137154

RESUMO

High-throughput transcriptomics (HTTr) is increasingly being used to identify molecular targets of chemicals that can be linked to adverse outcomes. Cell proliferation is an important key event in chemical carcinogenesis. Here, we describe the construction and characterization of a gene expression biomarker that is predictive of the cell proliferation (CP) status in human and rodent tissues. The biomarker was constructed from 30 genes known to be increased in expression in prostate cancers relative to surrounding tissues and in cycling human MCF-7 cells after estrogen receptor (ER) agonist exposure. Using a large compendium of gene expression profiles to test utility, the biomarker could identify increases in cell proliferation in 1) 367 tumor vs. normal surrounding tissue comparisons from 6 human organs, 2) MCF-7 cells after activation of ER, 3) after partial hepatectomy in mice and rats, and 4) the livers of mice after exposure to nongenotoxic hepatocarcinogens. The biomarker identified suppression of CP 1) under conditions of p53 activation by DNA damaging agents in human cells, 2) in human A549 lung cells exposed to therapeutic anticancer kinase inhibitors (dasatinib, nilotnib) and 3) in the mouse liver when comparing high levels of CP at birth to the low background levels in the adult. The responses using the biomarker were similar to those observed using conventional markers of CP including PCNA, Ki67, and BrdU labeling. The CP biomarker will be a useful tool for interpretation of HTTr data streams to identify cell proliferation status after exposure to chemicals in human cells or in rodent tissues.

3.
Toxicol Sci ; 200(1): 95-113, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38603619

RESUMO

Organophosphate esters (OPEs), used as flame retardants and plasticizers, are present ubiquitously in the environment. Previous studies suggest that exposure to OPEs is detrimental to female fertility in humans. However, no experimental information is available on the effects of OPE mixtures on ovarian granulosa cells, which play essential roles in female reproduction. We used high-content imaging to investigate the effects of environmentally relevant OPE mixtures on KGN human granulosa cell phenotypes. Perturbations to steroidogenesis were assessed using ELISA and qRT-PCR. A high-throughput transcriptomic approach, TempO-Seq, was used to identify transcriptional changes in a targeted panel of genes. Effects on lipid homeostasis were explored using a cholesterol assay and global lipidomic profiling. OPE mixtures altered multiple phenotypic features of KGN cells, with triaryl OPEs in the mixture showing higher potencies than other mixture components. The mixtures increased basal production of steroid hormones; this was mediated by significant changes in the expression of critical transcripts involved in steroidogenesis. Further, the total-OPE mixture disrupted cholesterol homeostasis and the composition of intracellular lipid droplets. Exposure to complex mixtures of OPEs, similar to those found in house dust, may adversely affect female reproductive health by altering a multitude of phenotypic and functional endpoints in granulosa cells. This study provides novel insights into the mechanisms of actions underlying the toxicity induced by OPEs and highlights the need to examine the effects of human relevant chemical mixtures.


Assuntos
Poeira , Ésteres , Retardadores de Chama , Células da Granulosa , Lipidômica , Organofosfatos , Fenótipo , Transcriptoma , Humanos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Transcriptoma/efeitos dos fármacos , Organofosfatos/toxicidade , Ésteres/toxicidade , Retardadores de Chama/toxicidade , Linhagem Celular , Metabolismo dos Lipídeos/efeitos dos fármacos , Plastificantes/toxicidade , Colesterol/metabolismo
4.
Photochem Photobiol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317517

RESUMO

Exposure to ultraviolet radiation (UV-R), from both natural and artificial tanning, heightens the risk of skin cancer by inducing molecular changes in cells and tissues. Despite established transcriptional alterations at a molecular level due to UV-R exposure, uncertainties persist regarding UV radiation characterization and subsequent genomic changes. Our study aimed to mechanistically explore dose- and time-dependent gene expression changes, that may drive short-term (e.g., sunburn) and long-term actinic (e.g., skin cancer) consequences. Using C57BL/6N mouse skin, we analyzed transcriptomic expression following exposure to five erythemally weighted UV-R doses (0, 5, 10, 20, and 40 mJ/cm2 ) emitted by a UV-R tanning device. At 96 h post-exposure, 5 mJ/cm2 induced 116 statistically significant differentially expressed genes (DEGs) associated with structural changes from UV-R damage. The highest number of significant gene expression changes occurred at 6 and 48 h post-exposure in the 20 and 40 mJ/cm2 dose groups. Notably, at 40 mJ/cm2 , 13 DEGs related to skin barrier homeostasis were consistently perturbed across all timepoints. UV-R exposure activated pathways involving oxidative stress, P53 signaling, inflammation, biotransformation, skin barrier maintenance, and innate immunity. This in vivo study's transcriptional data offers mechanistic insights into both short-term and potential non-threshold-dependent long-term health effects of UV-R tanning.

5.
Nat Ecol Evol ; 8(6): 1074-1086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641700

RESUMO

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.


Assuntos
Evolução Biológica , Cidades , Mutação , Urbanização , Humanos , Taxa de Mutação , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA