Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 30(3): 721-732, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669829

RESUMO

A major impediment to developing effective antimicrobials against Gram-negative bacteria like Salmonella is the ability of the bacteria to develop resistance against existing antibiotics and the inability of the antimicrobials to clear the intracellular bacteria residing in the gastrointestinal tract. As the critical balance of charge and hydrophobicity is required for effective membrane-targeting antimicrobials without causing any toxicity to mammalian cells, herein we report the synthesis and antibacterial properties of cholic acid-derived amphiphiles conjugated with alkyl chains of varied hydrophobicity. Relative to other hydrophobic counterparts, a compound with hexyl chain (6) acted as an effective antimicrobial against different Gram-negative bacteria. Apart from its ability to permeate the outer and inner membranes of bacteria; compound 6 can cross the cellular and lysosomal barriers of epithelial cells and macrophages and kill the facultative intracellular bacteria without disrupting the mammalian cell membranes. Oral delivery of compound 6 was able to clear the Salmonella-mediated gut infection and inflammation, and was able to combat persistent, stationary, and multi-drug-resistant clinical strains. Therefore, our study reveals the ability of cholic acid-derived amphiphiles to clear intracellular bacteria and Salmonella-mediated gut infection and inflammation.


Assuntos
Antibacterianos/administração & dosagem , Ácido Cólico/administração & dosagem , Inflamação/prevenção & controle , Enteropatias/prevenção & controle , Infecções por Salmonella/prevenção & controle , Administração Oral , Animais , Farmacorresistência Bacteriana Múltipla , Enteropatias/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Salmonella/isolamento & purificação , Salmonella/patogenicidade
2.
Mol Plant Pathol ; 25(1): e13417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279851

RESUMO

Stability and delivery are major challenges associated with exogenous double-stranded RNA (dsRNA) application into plants. We report the encapsulation and delivery of dsRNA in cationic poly-aspartic acid-derived polymer (CPP6) into plant cells. CPP6 stabilizes the dsRNAs during long exposure at varied temperatures and pH, and protects against RNase A degradation. CPP6 helps dsRNA uptake through roots or foliar spray and facilitates systemic movement to induce endogenous gene silencing. The fluorescence of Arabidopsis GFP-overexpressing transgenic plants was significantly reduced after infiltration with gfp-dsRNA-CPP6 by silencing of the transgene compared to plants treated only with gfp-dsRNA. The plant endogenous genes flowering locus T (FT) and phytochrome interacting factor 4 (PIF4) were downregulated by a foliar spray of ft-dsRNA-CPP6 and pif4-dsRNA-CPP6 in Arabidopsis, with delayed flowering and enhanced biomass. The rice PDS gene targeted by pds-dsRNA-CPP6 through root uptake was effectively silenced and plants showed a dwarf and albino phenotype. The NaCl-induced OsbZIP23 was targeted through root uptake of bzip23-dsRNA-CPP6 and showed reduced transcripts and seedling growth compared to treatment with naked dsRNA. The negative regulators of plant defence SDIR1 and SWEET14 were targeted through foliar spray to provide durable resistance against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Overall, the study demonstrates that transient silencing of plant endogenous genes using polymer-encapsulated dsRNA provides prolonged and durable resistance against Xoo, which could be a promising tool for crop protection and for sustaining productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infecções Bacterianas , RNA de Cadeia Dupla/farmacologia , Arabidopsis/metabolismo , Inativação Gênica , Infecções Bacterianas/genética , Polímeros/metabolismo , Polímeros/farmacologia , Doenças das Plantas/microbiologia , Interferência de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Sci Adv ; 9(26): eadf2746, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390205

RESUMO

Treatment of triple-negative breast cancer (TNBC) is challenging because of its "COLD" tumor immunosuppressive microenvironment (TIME). Here, we present a hydrogel-mediated localized delivery of a combination of docetaxel (DTX) and carboplatin (CPT) (called DTX-CPT-Gel therapy) that ensured enhanced anticancer effect and tumor regression on multiple murine syngeneic and xenograft tumor models. DTX-CPT-Gel therapy modulated the TIME by an increase of antitumorigenic M1 macrophages, attenuation of myeloid-derived suppressor cells, and increase of granzyme B+CD8+ T cells. DTX-CPT-Gel therapy elevated ceramide levels in tumor tissues that activated the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-mediated unfolded protein response (UPR). This UPR-mediated activation of apoptotic cell death led to release of damage-associated molecular patterns, thereby activating the immunogenic cell death that could even clear the metastatic tumors. This study provides a promising hydrogel-mediated platform for DTX-CPT therapy that induces tumor regression and effective immune modulation and, therefore, can be explored further for treatment of TNBC.


Assuntos
Hidrogéis , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Morte Celular Imunogênica , Linfócitos T CD8-Positivos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ceramidas , Modelos Animais de Doenças , Imunossupressores , Resposta a Proteínas não Dobradas , Microambiente Tumoral
4.
ACS Biomater Sci Eng ; 8(11): 4996-5007, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36288545

RESUMO

The unique structural components of cell membranes of Gram-positive bacteria, Gram-negative bacteria, and mycobacteria provide an excellent therapeutic target for developing highly specific antimicrobials. Here, we report the synthesis of nine cholic acid (CA)-derived amphiphiles, where three hydroxyl groups of CA were tethered to dimethylamino pyridine and the C24-carboxyl group was conjugated with different alkyl chains. Structure-activity investigations revealed that amphiphile 1 harboring a methyl group has antimicrobial activity against mycobacterial species. On the other hand, amphiphile 7 containing an octyl chain was selective against Gram-positive and Gram-negative bacilli. Biochemical assays confirmed the selective membrane permeabilization abilities of amphiphiles 1 and 7. Importantly, we demonstrate the selective actions of amphiphiles in clearing biofilms, intracellular bacteria, and wound infections. Therefore, for the first time, we show that the unique structural features of CA-derived amphiphiles dictate selective activity against specific bacterial species.


Assuntos
Antibacterianos , Bactérias Gram-Positivas , Ácido Cólico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Interações Hidrofóbicas e Hidrofílicas
5.
Mol Ther Nucleic Acids ; 16: 626-636, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108319

RESUMO

Chronic over-nutrition promotes adipocyte hypertrophy that creates inflammatory milieu leading to macrophage infiltration and their phenotypic switching during obesity. The SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1) has been identified as an important player in inflammatory diseases involving macrophages. However, the role of SHP-1 in modulating the macrophage phenotype has not been elucidated yet. In the present work, we show that adipose tissue macrophage (ATM)-specific deletion of SHP-1 using glucan particle-loaded siRNA improves the metabolic phenotype in dietary obese insulin-resistant mice. The molecular mechanism involves AT remodeling via reducing crown-like structure formation and balancing the pro-inflammatory (M1) and anti-inflammatory macrophage (M2) population. Therefore, targeting ATM-specific SHP-1 using glucan-particle-loaded SHP-1 antagonists could be of immense therapeutic use for the treatment of obesity-associated insulin resistance.

6.
J Mater Chem B ; 7(13): 2102-2122, 2019 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073569

RESUMO

Polyelectrolytes (PELs) - polymers with charged repeat units - have emerged as a useful class of polymers for biomedical applications due to their high aqueous solubility, low aggregation propensity and the opportunity they afford for polyvalent interactions with surfaces. Biodegradability and biocompatibility of PELs are important prerequisites for their utilization in in vivo applications. PELs that can be chemically functionalized with ease prove advantageous for creating diverse biomaterials. Polyaspartic acid (PASA) is a modular and biocompatible synthetic PEL that has all these features. It also shows many positive biomedical attributes such as bone-tissue targeting, muco-adhesive behavior and extended blood circulation time. Cationic PELs derived from PASA are rapidly internalized by mammalian and bacterial cells, and hence have immense utility in therapeutic delivery applications. Polyelectrolyte complexes (PECs) and multilayers (PEMs) formed from PASA PELs have further expanded their biomedical utility. This mini-review highlights some recent literature examples of unique biomedical applications of PELs, PECs and PEMs prepared through the molecular engineering of PASA. It discusses biomineralization modulators, anti-mycobacterial agents, underwater adhesives, mucoadhesive drug and gene delivery agents, and cell encapsulants fabricated using PASA derived PELs.


Assuntos
Materiais Biocompatíveis/farmacologia , Plásticos Biodegradáveis/farmacologia , Peptídeos/farmacologia , Polieletrólitos/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Incrustação Biológica/prevenção & controle , Humanos , Peptídeos/síntese química , Peptídeos/química , Polieletrólitos/síntese química , Polieletrólitos/química , Alicerces Teciduais/química
7.
Nanoscale ; 11(11): 4970-4986, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30839018

RESUMO

Poor success rates and challenges associated with the current therapeutic strategies of inflammatory bowel disease (IBD) have accelerated the emergence of gene therapy as an alternative treatment option with great promise. However, oral delivery of nucleic acids (NAs) to an inflamed colon is challenged by multiple barriers presented by the gastrointestinal, extracellular and intracellular compartments. Therefore, we screened a series of polyaspartic acid-derived amphiphilic cationic polymers with varied hydrophobicity for their ability to deliver NAs into mammalian cells. Using the most effective TAC6 polymer, we then engineered biocompatible and stable nanogels composed of polyplexes (TAC6, NA) and an anionic polymer, sodium polyaspartate, that were able to deliver the NAs across mammalian cells using caveolae-mediated cellular uptake. We then utilized these nanogels for oral delivery of PIAS1 (protein inhibitor of activated STAT1), a SUMO 3 ligase, encoding plasmid DNA since PIAS1 is a key nodal therapeutic target for IBD due to its ability to control NF-κB-mediated inflammatory signaling. We show that plasmid delivery using TAC6-derived nanogels diminished gut inflammation in a murine colitis model. Therefore, our study presents engineering of orally deliverable nanogels that can target SUMOylation machinery to combat gut inflammation with very high efficacy.


Assuntos
Colite/terapia , Técnicas de Transferência de Genes/instrumentação , Terapia Genética/métodos , Polietilenoglicóis/administração & dosagem , Polietilenoimina/administração & dosagem , Sumoilação , Administração Oral , Animais , Cátions/química , Linhagem Celular Tumoral , Colite/patologia , Colite/fisiopatologia , Colo/metabolismo , Colo/patologia , Colo/fisiopatologia , Modelos Animais de Doenças , Endocitose , Expressão Gênica , Terapia Genética/instrumentação , Humanos , Inflamação , Camundongos , Nanogéis , Peptídeos/química , Plasmídeos/administração & dosagem , Plasmídeos/química , Plasmídeos/genética , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polietilenoimina/química , Polietilenoimina/metabolismo , Polímeros/química , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
8.
ACS Cent Sci ; 5(10): 1648-1662, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31660434

RESUMO

Rapid proliferation of cancer cells assisted by endothelial cell-mediated angiogenesis and acquired inflammation at the tumor microenvironment (TME) lowers the success rate of chemotherapeutic regimens. Therefore, targeting these processes using localized delivery of a minimally toxic drug combination may be a promising strategy. Here, we present engineering of a biocompatible self-assembled lithocholic acid-dipeptide derived hydrogel (TRI-Gel) that can maintain sustained delivery of antiproliferating doxorubicin, antiangiogenic combretastatin-A4 and anti-inflammatory dexamethasone. Application of TRI-Gel therapy to a murine tumor model promotes enhanced apoptosis with a concurrent reduction in angiogenesis and inflammation, leading to effective abrogation of tumor proliferation and increased median survival with reduced drug resistance. In-depth RNA-sequencing analysis showed that TRI-Gel therapy induced transcriptome-wide alternative splicing of many genes responsible for oncogenic transformation including sphingolipid genes. We demonstrate that TRI-Gel therapy targets the reversal of a unique intron retention event in ß-glucocerebrosidase 1 (Gba1), thereby increasing the availability of functional Gba1 protein. An enhanced Gba1 activity elevates ceramide levels responsible for apoptosis and decreases glucosylceramides to overcome drug resistance. Therefore, TRI-Gel therapy provides a unique system that affects the TME via post-transcriptional modulations of sphingolipid metabolic genes, thereby opening a new and rational approach to cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA