Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 1): 113788, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35793723

RESUMO

Highly efficient and durable catalysts for wastewater treatment are urgently required to tackle critical environmental issues. In this regard, NiCr LDH (NC), NiCr LDH-GO (NC-GO), and NiCr LDH-rGO (NC-rGO) nanocomposites were synthesized. The results of XRD, EDX, and FTIR analyses not only explored the crystallographic and chemical structures of catalysts but also confirmed the successful synthesis. Further morphological, physical, chemical, and optical characteristics of the catalysts were evaluated more by SEM, HRTEM, BET, DRS, and XPS techniques. The as-synthesized catalysts were used for the efficient mineralization of rifadin under 50 W LED visible light irradiation and the ultrasonic power of 150 W. Amongst, 0.75 g L-1 of NC-rGO demonstrated high sonophotocatalytic efficiency (88%) in natural pH (pH = 8) of 15 mg L-1 of rifadin. The introduced system is also powerful for the decontamination of pharmaceutical-containing wastewater as well as other refractory antibiotics. Moreover, the radical trapping experiments demonstrated that the main reactive species involved in the degradation of rifadin are •OH, h+, and O2•-. The possible intermediates were thoroughly investigated using GCMS analysis. Also, NC-rGO demonstrated superior antibacterial activity in comparison with NC, NC-GO samples.


Assuntos
Grafite , Antibacterianos , Catálise , Hidróxidos , Rifampina
2.
Ultrason Sonochem ; 95: 106358, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913781

RESUMO

This study is the first to explore the possibility of utilizing CuCr LDH decorated on reduced graphene oxide (rGO) and graphene oxide (GO) as sonophotocatalysts for the degradation of dimethyl phthalate (DMP). CuCr LDH and its nanocomposites were successfully fabricated and characterized. Scanning electron microscopy (SEM) along with high-resolution transmission electron microscope (HRTEM) both evidenced the formation of randomly oriented nanosheet structures of CuCr LDH coupled with thin and folded sheets of GO and rGO. The impact of diverse processes on the degradation efficiency of DMP in the presence of the so-prepared catalysts was compared. Benefiting from the low bandgap and high specific surface area, the as-obtained CuCr LDH/rGO represented outstanding catalytic activity (100 %) toward 15 mg L-1 of DMP within 30 min when subjected to light and ultrasonic irradiations simultaneously. Radical quenching experiments and visual spectrophotometry using an O-phenylenediamine revealed the crucial role of hydroxyl radicals compared to holes and superoxide radicals. Overall, outcomes disclosed that CuCr LDH/rGO is a stable and proper sonophotocatalyst for environmental remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA