Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 37(2): e22724, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583687

RESUMO

Mitosis entails global and dramatic alterations, such as higher-order chromatin organization disruption, concomitant with global transcription downregulation. Cells reliably re-establishing gene expression patterns upon mitotic exit and maintaining cellular identities remain poorly understood. Previous studies indicated that certain transcription factors (TFs) remain associated with individual loci during mitosis and serve as mitotic bookmarkers. However, it is unclear which regulatory factors remain bound to the compacted mitotic chromosomes. We developed formaldehyde-assisted isolation of regulatory elements-coupled mass spectrometry (FAIRE-MS) that combines FAIRE-based open chromatin-associated protein pull-down and mass spectrometry (MS) to quantify the open chromatin-associated proteome during the interphase and mitosis. We identified 189 interphase and mitosis maintained (IM) regulatory factors using FAIRE-MS and found intrinsically disordered proteins and regions (IDP(R)s) are highly enriched, which plays a crucial role in liquid-liquid phase separation (LLPS) and chromatin organization during the cell cycle. Notably, in these IDP(R)s, we identified mitotic bookmarkers, such as CEBPB, HMGB1, and TFAP2A, and several factors, including MAX, HMGB3, hnRNP A2/B1, FUS, hnRNP D, and TIAL1, which are at least partially bound to the mitotic chromosome. Furthermore, it will be essential to study whether these IDP(R)s through LLPS helps cells transit from mitosis to the G1 phase during the cell cycle.


Assuntos
Cromatina , Proteoma , Proteoma/genética , Cromatina/genética , Cromossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mitose , Espectrometria de Massas
2.
BMC Genomics ; 23(1): 483, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780101

RESUMO

BACKGROUND: Zinc finger protein 143(ZNF143), a member of the Krüppel C2H2-type zinc finger protein family, is strongly associated with cell cycle regulation and cancer development. A recent study suggested that ZNF143 plays as a transcriptional activator that promotes hepatocellular cancer (HCC) cell proliferation and cell cycle transition. However, the exact biological role of ZNF143 in liver regeneration and normal liver cell proliferation has not yet been investigated. METHODS: In our study, we constructed a stable rat liver cell line (BRL-3A) overexpressing ZNF143 and then integrated RNA-seq and Cleavage Under Targets and Tagmentation (CUT&Tag) data to identify the mechanism underlying differential gene expression. RESULTS: Our results show that ZNF143 expression is upregulated during the proliferation phase of liver regeneration after 2/3 partial hepatectomy (PH). The cell counting kit-8 (CCK-8) assay, EdU staining and RNA-seq data analyses revealed that ZNF143 overexpression (OE) significantly inhibited BRL-3A cell proliferation and cell cycle progression. We then performed CUT&Tag assays and found that approximately 10% of ZNF143-binding sites (BSs) were significantly changed genome-wide by ZNF143 OE. However, CCCTC-binding factor (CTCF) binding to chromatin was not affected. Interestingly, the integration analysis of RNA-seq and CUT&Tag data showed that some of genes affected by ZNF143 differential BSs are in the center of each gene regulation module. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes are critical in the maintenance of cell identity. CONCLUSION: These results indicated that the expression level of ZNF143 in the liver is important for the maintenance of cell identity. ZNF143 plays different roles in HCC and normal liver cells and may be considered as a potential therapeutic target in liver disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Proliferação de Células/genética , Ratos , Transativadores/genética , Transativadores/metabolismo
3.
Curr Issues Mol Biol ; 44(7): 3156-3165, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35877442

RESUMO

Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.

4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232692

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) about 22 nucleotides in size, which play an important role in gene regulation and are involved in almost all major cellular physiological processes. In recent years, the abnormal expression of miRNAs has been shown to be associated with human diseases including cancer. In the past ten years, the link between miRNAs and various cancers has been extensively studied, and the abnormal expression of miRNAs has been reported in various malignant tumors, such as lung cancer, gastric cancer, colorectal cancer, liver cancer, breast cancer, and prostate cancer. Due to the high malignancy grade of these cancers, it is more necessary to develop the related diagnostic and prognostic methods. According to the study of miRNAs, many potential cancer biomarkers have been proposed for the diagnosis and prognosis of diseases, especially cancer, thus providing a new theoretical basis and perspective for cancer screening. The use of miRNAs as biomarkers for diagnosis or prognosis of cancer has the advantages of being less invasive to patients, with better accuracy and lower price. In view of the important clinical significance of miRNAs in human cancer research, this article reviewed the research status of miRNAs in the above-mentioned cancers in 2021, especially in terms of diagnosis and prognosis, and provided some new perspectives and theoretical basis for the diagnosis and treatment of cancers.


Assuntos
MicroRNAs , Neoplasias , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Incidência , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/metabolismo , Nucleotídeos , Prognóstico
5.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955794

RESUMO

microRNAs (miRNAs) are critically involved in liver regeneration (LR). miR-125a-5p (miR-125a) is a tumor-suppressing miRNA, but its role in LR has not been studied. Our previous studies have proved that miR-125a was related to LR at the initiation phase, while the mechanism hepatocyte proliferation triggered by miR-125a in LR has been rarely evaluated. Herein, we mainly studied the molecular mechanism of miR-125a in triggering hepatocyte proliferation and the proliferation stage of LR. Firstly, a striking reduction of miR-125a was found at 24 h as well as 30 h following partial hepatectomy (PH) in rat liver tissue by miRNAs expression profiles as well as qRT-PCR analysis. Furthermore, in vitro, upregulation of miR-125a decreased proliferation as well as G1/S conversion, which promoted hepatocytes apoptosis. STAT3 was the target of miR-125a. In vivo, upregulation of miR-125a by tail vein injection of agomir inhibited LR index. Upregulation of miR-125a inhibited LR index and hepatocytes proliferation by STAT3/p-STAT3/JUN/BCL2 axis. In summary, these current discoveries indicated that miR-125a inhibited hepatocytes proliferation as well as LR by targeting STAT3 and via acting on the STAT3/p-STAT3/JUN/BCL2 axis.


Assuntos
MicroRNAs , Animais , Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos
6.
Biochem Biophys Res Commun ; 523(2): 293-298, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31864705

RESUMO

During mitosis, transcription is ceased, chromatin becomes condensed, many chromatin features are lost, and most transcription factors (TFs) are excluded from chromosomes. The mechanism on how daughter cells maintain cell identity after exiting mitosis remains unclear. A subset of multiple lineage-specific and general TFs remains bound to mitotic chromosomes during mitosis, thereby suggesting a potential mechanism termed mitotic bookmarking. Here, genome-wide binding analysis of TF ZNF143 in human A549 lung epithelial cells reveals that ZNF143 remains partially associated with its interphase-specific genomic regions during mitosis. Genome distribution analysis shows that 80% of these regions preferentially localize to promoters. In addition, ZNF143 in mitosis may could recruit other relative TFs when the cells re-enter into G1 phase and rapidly initiates gene transcription. These results suggest that the dynamic binding of ZNF143 during cell cycle has a potential mitotic bookmarking role in maintaining cell fate and identity.


Assuntos
Transativadores/metabolismo , Células A549 , Sítios de Ligação/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Humanos , Interfase/genética , Interfase/fisiologia , Mitose/genética , Mitose/fisiologia , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/química , Transativadores/genética
7.
Yi Chuan ; 39(9): 847-855, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28936982

RESUMO

Highest-throughput chromosome conformation capture (Hi-C) is one of the key assays for genome- wide chromatin interaction studies. It is a time-consuming process that involves many steps and many different kinds of reagents, consumables, and equipments. At present, the reproducibility is unsatisfactory. By optimizing the key steps of the Hi-C experiment, such as crosslinking, pretreatment of digestion, inactivation of restriction enzyme, and in situ ligation etc., we established a robust Hi-C procedure and prepared two biological replicates of Hi-C libraries from the GM12878 cells. After preliminary quality control by Sanger sequencing, the two replicates were high-throughput sequenced. The bioinformatics analysis of the raw sequencing data revealed the mapping-ability and pair-mate rate of the raw data were around 90% and 72%, respectively. Additionally, after removal of self-circular ligations and dangling-end products, more than 96% of the valid pairs were reached. Genome-wide interactome profiling shows clear topological associated domains (TADs), which is consistent with previous reports. Further correlation analysis showed that the two biological replicates strongly correlate with each other in terms of both bin coverage and all bin pairs. All these results indicated that the optimized Hi-C procedure is robust and stable, which will be very helpful for the wide applications of the Hi-C assay.


Assuntos
Cromossomos/genética , Genoma/genética , Linhagem Celular , Cromatina/genética , Mapeamento Cromossômico/métodos , Genômica/métodos , Humanos , Conformação de Ácido Nucleico , Controle de Qualidade , Reprodutibilidade dos Testes
8.
Bioinformatics ; 31(19): 3081-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26019240

RESUMO

MOTIVATION: Synonymous codon usage bias has been shown to be correlated with many genomic features among different organisms. However, the biological significance of codon bias with respect to gene function and genome organization remains unclear. RESULTS: Guanine and cytosine content at the third codon position (GC3) could be used as a good indicator of codon bias. Here, we used relative GC3 bias values to compare the strength of GC3 bias of genes in human and mouse. We reported, for the first time, that GC3-rich and GC3-poor gene products might have distinct sub-cellular spatial distributions. Moreover, we extended the view of genomic gene domains and identified conserved GC3 biased gene domains along chromosomes. Our results indicated that similar GC3 biased genes might be co-translated in specific spatial regions to share local translational machineries, and that GC3 could be involved in the organization of genome architecture. AVAILABILITY AND IMPLEMENTATION: Source code is available upon request from the authors. CONTACT: zhaozh@nic.bmi.ac.cn or zany1983@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Composição de Bases/genética , Genes , Mamíferos/genética , Animais , Códon/genética , Humanos , Camundongos , Frações Subcelulares/metabolismo
9.
Yi Chuan ; 38(7): 651-657, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27733338

RESUMO

The CCCTC-binding factor (CTCF) is the main insulator protein described in vertebrates. It plays fundamental roles during diverse cellular processes. CTCF gene knockout mice led to death during embryonic development. To further explore the functions of CTCF, we employed a CRISPR/Cas9-based genome engineering strategy to in-frame insert the mitosis-special degradation domain (MD) of cyclin B into the upstream open reading frame of CTCF gene. Fusion protein is designed to degrade during mitosis leaded by MD. As a control group, mutation of a single arginine (R42A) within the destruction box inactivates the MD leading to constitutive expression of MD*-CTCF. The homozygous clones were obtained via the screening by puromycin when coexpressed with puromycin resistence gene. The protein level of CTCF in MD-CTCF cell line was about 10% of wild-type cells throughout cell cycles by the analyses of Western blotting and immunofluorescence. There was no significant difference between MD*-CTCF cell line and wild type. Flow cytometry results showed prolonged G1 phase in MD-CTCF cell line. Taken together, we demonstrated the feasibility of efficiently inserting MD domain into genome with the CRISPR/Cas9 technology and reported the first CTCF-specific degradation human cell line.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Divisão Celular , Linhagem Celular Tumoral , Fase G1 , Humanos , Proteínas Repressoras/análise , Proteínas Repressoras/química
10.
Biol Res ; 48: 27, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013116

RESUMO

BACKGROUND: The CCCTC-binding factor (CTCF) is a highly conserved insulator protein that plays various roles in many cellular processes. CTCF is one of the main architecture proteins in higher eukaryotes, and in combination with other architecture proteins and regulators, also shapes the three-dimensional organization of a genome. Experiments show CTCF partially remains associated with chromatin during mitosis. However, the role of CTCF in the maintenance and propagation of genome architectures throughout the cell cycle remains elusive. RESULTS: We performed a comprehensive bioinformatics analysis on public datasets of Drosophila CTCF (dCTCF). We characterized dCTCF-binding sites according to their occupancy status during the cell cycle, and identified three classes: interphase-mitosis-common (IM), interphase-only (IO) and mitosis-only (MO) sites. Integrated function analysis showed dCTCF-binding sites of different classes might be involved in different biological processes, and IM sites were more conserved and more intensely bound. dCTCF-binding sites of the same class preferentially localized closer to each other, and were highly enriched at chromatin syntenic and topologically associating domains boundaries. CONCLUSIONS: Our results revealed different functions of dCTCF during the cell cycle and suggested that dCTCF might contribute to the establishment of the three-dimensional architecture of the Drosophila genome by maintaining local chromatin compartments throughout the whole cell cycle.


Assuntos
Cromatina/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/química , Genoma de Inseto/genética , Mitose/fisiologia , Proteínas Repressoras/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Biologia Computacional , Sequência Conservada , Conjuntos de Dados como Assunto , Interfase/fisiologia , Anotação de Sequência Molecular , Sintenia
11.
J Tradit Chin Med ; 34(1): 63-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25102693

RESUMO

OBJECTIVE: To investigate the effects of artemisinin against proteinuria and glomerular filtration barrier damage in rats with adriamycin-induced nephropathy, and the potential mechanism underpinned the action. METHODS: Forty adriamycin rats were randomly divided into two groups with the ratio of 1 : 3; the small-number group served as control group (n = 10), and the rats in the large-number group were treated with adriamycin to induce nephropathy; then they were further randomly assigned into 3 subgroups: benazepril group (n = 10), artemisinin group (n = 10), and adriamycin group (n = 10). The benazepril group and artemisinin group were treated with benazepril suspl (5.0 mg/kg daily) and artemisinin suspl (150 mg/kg daily) respectively after being modeled; those in the control group and adriamycin group were intragastrically administered an equivalent volume of distilled water every day. The treatment after model establishment lasted for a total of 4 weeks. The 24 h uric protein, blood biochemicals, renal pathological changes, renal ultrastrutural changes, Nephrin and Podocin proteins and gene expressions were measured by Coomassie brilliant blue assay, completely automatic biochemical analyzer, light microscope, electron microscopy, Western blot and reverse transcription polymerase chain reaction, respectively. RESULTS: The rats in adriamycin group showed a significant increase in 24 h uric protein excretion, serum total cholesterol (TC), triglyceride (TG), blood urea nitrogen (BUN), serum creatinine (Scr) and decrease in albumin (Alb) (P < 0.05 or P < 0.01). Compared with adriamycin group, artemisinin could reduce uric protein excretion, decrease the serum TC, TG elevation, increase the serum Alb level, up-regulate the expressions of Nephrin and Podocin (P < 0.05 or P < 0.01), but no statistical significance effects on the levels of BUN, Scr in artemisinin group (P > 0.05). The renal pathological and ultrastrutural observation indicate that artemisinin could attenuate the severity of foot process effacement and fusion in the nephropathic rats. CONCLUSION: Artemisinin might have an effect on the nephropathy in rats caused by adriamycin, which may be at least partly correlated with attenu- ation of the severity of foot process effacement and fusion, up-regulation of the expressions of Nephrin and Podocin in the glomeruli in the rats.


Assuntos
Artemisininas/administração & dosagem , Doxorrubicina/efeitos adversos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nefropatias/tratamento farmacológico , Proteínas de Membrana/genética , Proteinúria/tratamento farmacológico , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/metabolismo , Ratos
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 45(2): 207-11, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24749341

RESUMO

OBJECTIVE: To determine the effect of Qufeng Tongluo Recipe (QFTLR) on the expressions of connexin 36 (Cx36) protein and gene in rat mesangial cells (MCs) and the proliferation of the MCs. METHODS: Serum samples containing Benazepril (Bena) and QFTLR were prepared in line with serum pharmacology methodology. The MCs cultured in vitro were divided into normal control and Lipopolysaccharide (LPS), Bena and QFTLR treated groups. The expressions of Cx36 protein and gene were detected by laser scanning confocal microscope (LSCM), Western blot, immunohistochemical assay and quantitative real time polymerase chain reaction (QRT-PCR) respectively. RESULTS: Compared with the control, higher level of Cx36 protein expression was found in the MCs than treated with LPS (P < 0.01). Both Bena and QFTLR lowered the level of Cx36 protein expression in the MCs treated with LPS significantly (P < 0.01 or P < 0.05). Similar results were found with the expression of Cx36 mRNA. CONCLUSION: QFTLR inhibits the proliferation of rat MCs, possibly through down-regulating the expressions of Cx36 protein and gene.


Assuntos
Conexinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Células Mesangiais/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Proliferação de Células , Lipopolissacarídeos/farmacologia , Células Mesangiais/metabolismo , RNA Mensageiro , Ratos , Proteína delta-2 de Junções Comunicantes
13.
iScience ; 27(1): 108683, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38155779

RESUMO

The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.

14.
Sci Rep ; 13(1): 10946, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414929

RESUMO

Liver fibrosis is caused by chronic hepatic injury and may lead to cirrhosis, and even hepatocellular carcinoma. When hepatic stellate cells (HSCs) are activated by liver injury, they transdifferentiate into myofibroblasts, which secrete extracellular matrix proteins that generate the fibrous scar. Therefore, it is extremely urgent to find safe and effective drugs for HSCs activation treatment to prevent liver against fibrosis. Here, we reported that PDZ and LIM domain protein 1 (PDLIM1), a highly conserved cytoskeleton organization regulator, was significantly up-regulated in fibrotic liver tissues and TGF-ß-treated HSC-T6 cells. Through transcriptome analysis, we found that knockdown of PDLIM1 resulted in a significant downregulation of genes related to inflammation and immune-related pathways in HSC-T6 cells. Moreover, PDLIM1 knockdown significantly inhibited the activation of HSC-T6 cells and the trans-differentiation of HSC-T6 cells into myofibroblasts. Mechanistically, PDLIM1 is involved in the regulation of TGF-ß-mediated signaling pathways in HSCs activation. Thus, targeting PDLIM1 may provide an alternative method to suppress HSCs activation during liver injury. CCCTC-binding factor (CTCF), a master regulator of genome architecture, is upregulated during HSCs activation. PDLIM1 knockdown also indirectly reduced CTCF protein expression, however, CTCF binding to chromatin was not significantly altered by CUT&Tag analysis. We speculate that CTCF may cooperate with PDLIM1 to activate HSCs in other ways. Our results suggest that PDLIM1 can accelerate the activation of HSCs and liver fibrosis progression and could be a potential biomarker for monitoring response to anti-fibrotic therapy.


Assuntos
Neoplasias Hepáticas , Transdução de Sinais , Humanos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Hepáticas/patologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-35497917

RESUMO

Mesangial proliferative glomerulonephritis (MesPGN) is a common renal disease that lacks effective drug intervention. Aconiti Lateralis Radix (Fuzi), a natural Chinese medical herb, is found with significant therapeutic effects on various diseases in the clinic. However, its effects on MesPGN have not been reported. This study is aimed to discuss the therapeutic effects of the aqueous extract of Aconiti Lateralis Radix (ALR) and the polysaccharides of Aconiti Lateralis Radix (PALR) on MesPGN as well as the underlying mechanism. In this study, we, firstly, studied the anti-MesPGN mechanism of ALR and PALR. ALR and PALR inhibit the proliferation of the mesangial cells through the PI3K/AKT/mTOR pathway, induce the G0/G1 phase of block and apoptosis, inhibit the activity of Cyclin E and CDK2, increase the expression of Bax, cleaved caspase-8/caspase-8, and cleaved caspase-3/caspase-3 proteins, and effectively inhibit the growth of the mesangial cells. Overall, our data suggest that ALR and PALR may be potential candidates for MesPGN and that PALR is more effective than ALR.

16.
iScience ; 25(11): 105349, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325053

RESUMO

RNA species act as architectural scaffolds for nuclear structures including chromatin in eukaryotic cells. However, the composition and dynamics of tightly bound chromatin-associated RNAs during mitosis remains elusive. Here we report the identification of chromatin-enriched RNA (cheRNAs) by biochemical nuclear fractionation coupled with RNA sequencing in both interphase and mitotic phase of A549 and HeLa-S3 cell lines. We show that highly abundant cheRNAs, mostly small noncoding RNAs, are largely maintained in mitotic chromatin, and constitute a substantial part of chromatin RNA throughout cell cycle. We also show that the mitotic retained cheRNAs tend to be cell type nonspecific and might be involved in chromatin accessibility and epigenetic memory of gene expression control. Therefore, we reveal an unexpected set of cell type-nonspecific mitotic retained chromatin-enriched RNAs. We anticipate that the landscape of RNA composition of chromatin both in interphase and mitotic phase would help understanding structure and function of chromatin.

17.
Front Microbiol ; 13: 879321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711756

RESUMO

Our previous work have shown that certain subpopulations of Klebsiella pneumoniae exhibit significant phenotypic changes under simulated microgravity (SMG), including enhanced biofilm formation and cellulose synthesis, which may be evoked by changes in gene expression patterns. It is well known that prokaryotic cells genomic DNA can be hierarchically organized into different higher-order three-dimensional structures, which can highly influence gene expression. It is remain elusive whether phenotypic changes induced by SMG in the subpopulations of K. pneumoniae are driven by genome higher-order structural changes. Here, we investigated the above-mentioned issue using the wild-type (WT) K. pneumoniae (WT was used as a control strain and continuously cultivated for 2 weeks under standard culture conditions of normal gravity) and two previous identified subpopulations (M1 and M2) obtained after 2 weeks of continuous incubation in a SMG device. By the combination of genome-wide chromosome conformation capture (Hi-C), RNA-seq and whole-genome methylation (WGS) analyses, we found that the along with the global chromosome interactions change, the compacting extent of M1, M2 subpopulations were much looser under SMG and even with an increase in active, open chromosome regions. In addition, transcriptome data showed that most differentially expressed genes (DEGs) were upregulated, whereas a few DEGs were downregulated in M1 and M2. The functions of both types DEGs were mainly associated with membrane fractions. Additionally, WGS analysis revealed that methylation levels were lower in M1 and M2. Using combined analysis of multi-omics data, we discovered that most upregulated DEGs were significantly enriched in the boundary regions of the variable chromosomal interaction domains (CIDs), in which genes regulating biofilm formation were mainly located. These results suggest that K. pneumoniae may regulate gene expression patterns through DNA methylation and changes in genome structure, thus resulting in new phenotypes in response to altered gravity.

18.
Front Genet ; 11: 338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318100

RESUMO

ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type protein consisting of seven zinc finger domains. As a transcription factor (TF), ZNF143 is sequence specifically binding to chromatin and activates the expression of protein-coding and non-coding genes on a genome scale. Although it is ubiquitous expressed, its expression in cancer cells and tissues is usually higher than that in normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting that new small molecules can be designed by targeting ZNF143 as it may be a good potential biomarker and therapeutic target for related cancers. However, the mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently, with the development of chromatin conformation capture (3C) and its derivatives, and high-throughput sequencing technology, new findings have been obtained in the study of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters and contributes to chromatin interactions connecting promoters to distal regulatory elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with cohesin and other partners. These results indicate that ZNF143 is a key loop formation factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in early G1 phase. In the future, researchers could further clarify the fine mechanism of ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C technology. Thus, in this review, we summarize the research progress of TF ZNF143 in detail and also predict the potential functions of ZNF143 in cell fate and identity based on our recent discoveries.

19.
J Tradit Chin Med ; 40(4): 613-620, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32744028

RESUMO

OBJECTIVE: To determine the effect of Wenyang Huazhuo Fang (WHF), a Traditional Chinese Medicine decoction, on renal function in a rat model of doxorubicin-induced nephropathy, and to elucidate the underlying mechanism. METHODS: Sprague-Dawley rats were randomly divided into six groups: control, doxorubicin-nephropathy, and prednisone-treated (6.45 mg·kg-1·d-1) doxorubicin nephropathy groups, as well as high- (7.26 g·kg-1·d-1, medium- (2.42 g·kg-1·d-1, and low-dose (0.81 g·kg-1·d-1 WHF-treated doxorubicin-nephropathy groups. The nephropathy rat model was established by two tail vein injections of doxorubicin, followed by prednisone or WHF treatment for 8 weeks. Body weights were monitored and urinary protein was measured every 2 weeks. After the end of the treatment period, the rats were euthanized. Serum biochemical indicators were determined and renal morphological alterations were assessed using histological staining. The expression of transient receptor potential cation channel subfamily C member 6 (TRPC6), stromal interaction molecule 1 (STIM1), and calcium release-activated calcium channel protein 1 (Orai1) was detected using western blotting, and their mRNA levels were examined using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: WHF treatment was found to significantly ameliorate weight loss, proteinuria, hypoalbuminemia, and dyslipidemia in doxorubicin-nephropathy rats. The protein and mRNA levels of TRPC6, STIM1, and Orai1 were partially, but significantly suppressed by prednisone or WHF treatment. CONCLUSION: Treatment with WHF significantly ameliorates renal injury in a rat model of doxorubicin-induced nephropathy, which could be at least partially related to repression of the TRPC6 pathway.


Assuntos
Doxorrubicina/efeitos adversos , Medicamentos de Ervas Chinesas/administração & dosagem , Nefropatias/prevenção & controle , Substâncias Protetoras/administração & dosagem , Canais de Cátion TRPC/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/genética
20.
Front Microbiol ; 11: 2040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983034

RESUMO

The growth rate of bacteria increases under simulated microgravity (SMG) with low-shear force. The next-generation microbial chassis Vibrio natriegens (V. natriegens) is a fast-growing Gram-negative, non-pathogenic bacterium with a generation time of less than 10 min. Screening of a V. natriegens strain with faster growth rate was attempted by 2-week continuous long-term culturing under SMG. However, the rapid growth rate of this strain made it difficult to obtain the desired mutant strain with even more rapid growth. Thus, a mutant with slower growth rate emerged. Multi-omics integration analysis was conducted to explore why this mutant grew more slowly, which might inform us about the molecular mechanisms of rapid growth of V. natriegens instead. The transcriptome data revealed that whereas genes related to mechanical signal transduction and flagellin biogenesis were up-regulated, those involved in adaptive responses, anaerobic and nitrogen metabolism, chromosome segregation and cell vitality were down-regulated. Moreover, genome-wide chromosome conformation capture (Hi-C) results of the slower growth mutant and wide type indicated that SMG-induced great changes of genome 3D organization were highly correlated with differentially expressed genes (DEGs). Meanwhile, whole genome re-sequencing found a significant number of structure variations (SVs) were enriched in regions with lower interaction frequency and down-regulated genes in the slower growth mutant compared with wild type (WT), which might represent a prophage region. Additionally, there was also a decreased interaction frequency in regions associated with well-orchestrated chromosomes replication. These results suggested that SMG might regulate local gene expression by sensing stress changes through conformation changes in the genome region of genes involved in flagellin, adaptability and chromosome segregation, thus followed by alteration of some physiological characteristics and affecting the growth rate and metabolic capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA